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Introduction

A good conception of what structurable algebras and (Jordan-)Kantor pairs should be over commu-
tative unital rings Φ, with 1/6 not necessarily contained in Φ, is still lacking. �is is a pity, as these
structures play an important role in the construction of 5-graded Lie algebras and related algebraic
structures. So, the investigations of this thesis should be considered in the context of a search of an
extended de�nition for those structures, without any assumptions on the base ring Φ over which
we work. �roughout the rest of this introduction, Φ will be the base ring.

We develop some novel concepts which allow us to generalize the results of certain articles authored
by Faulkner [Fau00] and [Fau04]. In those articles, Faulkner establishes a connection between
(quadratic) Jordan pairs, Hopf algebras and algebraic Φ-groups. �rough the generalization of these
results, it becomes clearer what the (Jordan-)Kantor pairs should be if 1/6 /∈ Φ. Moreover, if we can
assume that 1/2 ∈ Φ, then it is highly probable that the Jordan-Kantor-like sequence pairs form an
adequate generalization. If 1/2 /∈ Φ, it is probable that some additional constraints are required.

Now, we give an outline of the structure and the results of our thesis. �is outline will not be
in exact order since most chapters do not really build upon chapters other than chapters 2 and 4.
�ere is an occasional reference between the other chapters, but that is most of the time nothing of
substance. Speci�cally, one can get to the main result(s) of each of those chapters without needing
the others.

In chapter 2 we introduce some structures called sequence (Φ-)groups and sequence pairs. �ese
will be the core concepts that we use throughout this thesis. To set these up, especially the sequence
pairs, we need to do some preliminary investigations which encompass a lot of that chapter. �e
sequence pairs form a proper generalization of the Jordan-Kantor pairs if 1/30 ∈ Φ.

�eorem A. Let P be a Jordan-Kantor pair (1/6 ∈ Φ), and let L be TKK(P, InStr(P ) + Φζ) with
ζ a grading element. Consider the Φ-groups G+, G− formed by the exponentials of only positively or
only negatively graded elements. If either

• 1/5 ∈ Φ,

• xn[a, b] =
∑

i+j=n[xia, xjb] for all a, b ∈ L and n ∈ N, x ∈ G±(Φ),

then these groups form a sequence pair. Conversely, if 1/6 ∈ Φ, then each sequence pair is isomorphic
to a sequence pair de�ned from a Jordan-Kantor pair.

Proof. �is is �eorem (2.4.8) combined with Corollary (4.3.5). �

In the same chapter, we also prove that all Hopf algebras of a certain class induce sequence pairs.

�eorem B. LetH be a Z-graded Hopf algebra over Φ so that the primitive elements have an induced
5-grading. Suppose that for all ±2 graded primitive elements x there exist an in�nite homogeneous
dps over x and that, either

• 1/2 ∈ Φ and for each primitive element which is ±1 graded, there exists an in�nite positive, or
negative, homogeneous dps (1, x, . . .),
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Introduction

• there exists a quadratic form f such that for all primitive elements x which are±1 graded there
exists an in�nite positive homogeneous dps (1, x, f(x), . . .),

then the positive homogeneous divided power series and the negative homogeneous divided power series
form a Jordan-Kantor-like sequence pair. Conversely, for any sequence pair over a �eld Φ of charac-
teristic di�erent from 2 and 3, the universal sequence pair representation is such a Hopf algebra.

Proof. �e �rst direction is proved (modulo the trivial Jordan-Kantor-like addition) in �eorem
(2.4.23). �e converse part is proved by Corollaries (4.1.13) and (5.3.15). �

We immediately integrated the converse parts of these theorems. To do that, we needed chapters
4 and 5. In the �rst section of chapter 4, we introduce the universal sequence pair representation,
which is actually a Hopf algebra satisfying the conditions of �eorem B, excluding the restrictions
on the primitive elements. In the same chapter, we investigate the (Jordan-)Kantor-like sequence
pairs (1/2 ∈ Φ is assumed if it is Jordan-Kantor-like). �is investigation shows, among other things,
that each sequence pair is a Jordan-Kantor-like sequence pair if 1/6 ∈ Φ. We also investigate the
class of structurable algebras from a hermitian form.

In chapter 5, we set ourselves up to prove Corollary (5.3.15), which we used in �eorem B. We
prove the corollary by generalizing some work of Faulkner [Fau00, Section 6]. �e last section of
chapter 5 closely follows Faulkner. �e �rst 2 sections serve to generate the tools to closely follow
his exposition. In chapter 6, we generalize section 7 of the same article, by determining what the
universal representation should be if Φ is a �eld of characteristic 0.

�eorem C. Let G be a sequence pair over a �eld Φ of characteristic 0. �e universal sequence pair
representation ofG is isomorphic to the universal enveloping algebra of the universal central extension
of TKK(G, InDer(G)).

Proof. �is is a slightly di�erent formulation of �eorem (6.2.2). �

We apply and generalize the results of another article of Faulkner [Fau04] in chapter 7. �e structure
of that article allows us to use a lot of the results without any adaptation. As such, the generalization
�ts into a single chapter. We �nish that chapter by generalizing his last two theorems about Jordan
pairs to Jordan-Kantor-like sequence pairs. We do not fully generalize that article, even though we
could. As we do not fully generalize that article, this chapter remains independent of chapter 5. We
now formulate the two main theorems of that chapter.

�eorem D (7.5.1). If G = (G+, G−) is a �nite dimensional Jordan-Kantor-like sequence pair over
Φ, J is the kernel of the TKK representation, and

I = ker(ε) ∩ J ∩ S(J),

then G′ = GU(G),I is an algebraic Φ-group, with algebraic Φ-subgroups

U+ = GX ,I+ ∼= G+, U− = GY,I− ∼= G−, H = GH,I0 ,

with I+ = X ∩ I, etc.

�eorem E (7.5.4). If G is an a�ne algebraic group scheme, then every generalized elementary
action of Φm on G gives a Z-grading of Dist(G) as a Hopf algebra, such that the induced Z-grading
of Lie(G) is

Lie(G) = Lie(U−)2 ⊕ Lie(U−)1 ⊕ Lie(H)⊕ Lie(U+)1 ⊕ Lie(U+)2

viii



Introduction

and there is a homogeneous divided power sequence over each x ∈ Lie(U±). Moreover,

(Lie(U+), Lie(U−))

is a Jordan-Kantor-like sequence pair.

�ere are 2 chapters we did not mention yet, namely chapters 3 and 8. �ese chapters do not
generalize results from the articles we generalize in the other chapters. In chapter 3, we investigate
special sequence pairs. �is leads to some very palpable examples of sequence pairs. However,
in that chapter we prove nothing out of the ordinary. We prove that associative algebras with
involution certainly induce sequence pairs if 1/2 ∈ Φ. If 1/2 /∈ Φ we give some examples which
include, for example, separable �eld extensions of degree 2 and quaternion algebras.

In chapter 8, we de�ne derivations and determine the conditions derivations should satisfy. Further-
more, we revisit what Jordan-Kantor-like sequence pairs should be. �is gives us a class of sequence
pairs with which we can identify TKK Lie algebras so that they have de�ning representations in
the endomorphism algebra.

�eorem F (8.2.5). Let G be a Jordan-Kantor-like sequence pair. For each derivation algebra D of
G containing the inner derivations, L = TKK(G,D) is a 5-graded Lie algebra and G has a Jordan-
Kantor-like sequence pair representation in the endomorphism algebra of L.

To summarise, we have established back and forth correspondences (although not necessarily for
all Φ) between (certain classes of) (1) sequence pairs, (2) Hopf algebras, (3) Jordan-Kantor pairs,
(4) Lie algebras and (5) algebraic Φ-groups. Besides that, we also constructed some very concrete
examples of sequence pairs.
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1 Preliminaries and Context

In this chapter, we introduce some de�nitions and theorems. �ese de�nitions and theorems place
the following chapters in context and introduce the notational conventions we used.

1.1 Conventions

We will always use Φ to denote a commutative unital ring. Additional assumptions, like Φ con-
taining 1/6, will always be stated clearly. Since �elds are also commutative unital rings, we do not
denote Φ di�erently if we are working over �elds. We mean with Φ-alg the category of unital com-
mutative associative Φ-algebras, and we will mostly denote its elements with K . Other Φ-algebras
do not need to be associative nor commutative. �e reasons for these conventions are quite simple.
We will be working with Φ-algebrasA. �eseAwill very o�en be either associative or Lie algebras.
For such A, we will frequently be interested in the algebras A⊗Φ K seen as a K-algebra.

We assume that all Φ-modules M are unital, i.e. 1 · m = m. However, if we consider modules
of Φ-algebras A, then we do not necessarily make that assumption for the A-module structure. It
would even be an impossible assumption, as A does not necessarily contain a unit.

We mean with the dual numbers the ring Φ[ε] with ε2 = 0. So, in the context of the dual numbers
ε is always a well-determined element, except if we explicitly choose to use another description of
the dual numbers.

For groups, we mean by the conjugation gh = h−1gh and by the commutator [g, h] = g−1h−1gh.

1.2 Morphisms, substructures and gradings

We will need to introduce some notions of morphisms. To prevent stating the same thing ten times,
we give a fairly general de�nition that applies to a lot of cases.

De�nition 1.2.1. Consider a set I and let M and N be Φ-modules. Suppose that we have linear
maps

fXi : X⊗ni −→ X⊗mi ,

for X = N,M and i ∈ I . A (homo-)morphism between (M, (fMi )i∈I) and (N, (fNi )i∈I) is a
linear map ψ : M −→ N such that

fNi ◦ ψ⊗ni = ψ⊗mi ◦ fMi

holds for all i. �e substructures of M can be identi�ed with the images of morphisms into M . �e
notions of monomorphism, epimorphisms and isomorphism can either be de�ned in the category-
theoretic sense or by looking if the underlying linear map ψ is a mono-, epi- or isomorphism.

11



1 Preliminaries and Context

Remark 1.2.2. Not all structures of this chapter fall under the previous de�nition. Nevertheless,
it encompasses a lot of structures. For example, it covers Lie algebras, Lie triple systems, Hopf
algebras, etc. To see that it encompasses these structures, we must identify bilinear multiplications
A × A −→ A with linear maps A ⊗ A −→ A, etc. A class of algebras that do not fall under the
previous de�nition are the quadratic Jordan pairs, as they have a quadratic operation.

Now, we de�ne graded operations.

De�nition 1.2.3. Suppose that M is a Φ-module. Assume that there is an abelian group G so that
there are submodules Mg for g ∈ G of M such that M =

⊕
g∈GMg . Suppose that

fi : M⊗ni −→M⊗mi

are Φ-linear maps for i in some indexing set I . We call (M, (fi)i∈I) G-graded if

fi(Ma1 ⊗ · · · ⊗Mani
) ⊂

⊕
b

Mb1 ⊗ · · · ⊗Mbmi
,

where b = (b1, . . . , bmi) runs over the solutions of
∑mj

i=1 bj =
∑ni

j=1 aj , is satis�ed for all i ∈ I .

Remark 1.2.4. • �e G of the previous de�nition will, throughout this thesis, always be Z.

• �is de�nition includes the bilinear multiplication of algebras. To see this, one needs to
identify the multiplication with the corresponding linear map M ⊗ M −→ M . We will
denote this multiplication as µ : M ⊗M −→M for associative Φ-algebras M .

• Note that this de�nition takes into consideration multiple operations fi. �is will be useful
when we consider Hopf algebras.

1.3 Lie algebras

De�nition 1.3.1. A Φ-module L with a bilinear map (x, y) 7−→ [x, y] ∈ L is called a Lie algebra,
if [x, x] = 0 and if it satis�es the Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

for all x, y, z ∈ L.

De�nition 1.3.2. A derivation on a Lie algebra L is a Φ-module morphism D : L −→ L such
that D[x, y] = [Dx, y] + [x,Dy]. Derivations of the form ad(x)(y) = [x, y] are called inner
derivations. Note that for each x ∈ L, the map ad(x) actually is a derivation.

De�nition 1.3.3. For x ∈ L we denote with exp(x) =
∑∞

i=0 ad(x)i/i!. Notice that this is not
always well de�ned. However, if ad(x)i = 0 for all i > j and if j! is invertible in Φ, then the
exponentials are still de�ned.

Remark 1.3.4. We remark that any associative algebra A induces a Lie algebra with Lie bracket
[a, b] = ab− ba.

We will need universal central extensions. We will not really delve into the theory of those ex-
tensions. However, all results involving universal central extensions that we will use, come from
Benkart and Smirnov [BS03]. So, we include the notions introduced in [BS03, Paragraph 5.9].

12



1 Preliminaries and Context

De�nition 1.3.5. Let L be a Lie algebra over Φ. �e center of L is the submodule

Z(L) = {x ∈ L| ad x = 0}

of L. We call L perfect if [L,L] = L.

De�nition 1.3.6. A central extension of a Lie algebra L is a pair (L̃, π) such that π : L̃ −→ L
is a surjective morphism of Lie algebras with ker(π) ⊆ Z(L̃). A covering is a central extension
which is perfect. A cover is universal if for every central extension (M, τ), there is a unique
homomorphism φ : L̃ −→ M such that τ ◦ φ = π. We refer to the universal central covering as
the universal central extension.

Remark 1.3.7. If L is a Z-graded Lie algebra such that L−m, Lm are trivial for each m > n, then
we also call L a (2n+ 1)-graded Lie algebra.

1.4 Lie triple systems

De�nition 1.4.1. Let L be a Φ-module together with a trilinear map (x, y, z) 7−→ [xyz]. �is is
called a Lie triple system (LTS), if

0 = [xxz], (LTS1)
0 = [xyz] + [yzx] + [zxy], (LTS2)

[uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]], (LTS3)

for all u, v, x, y, z ∈ L.

Remark 1.4.2. �e axiom LTS3 might seem a bit odd at �rst glance. �is axiom will, at least in the
preliminaries, appear in multiple equivalent forms. We will see that it expresses that L(u, v)(x) =
[uvx] is a derivation.

De�nition 1.4.3. A derivation of a Lie triple system L is a Φ-morphism D : L −→ L such that

[D,L(x, y)] = L(Dx, y) + L(x,Dy),

with L(x, y)(z) = [xyz]. Set Θ(L) to be the derivation algebra of L and let G be the submodule
of Θ(L) generated by the derivations L(x, y). All the L(x, y) are derivations by axiom LTS3. Note
that G is, by de�nition, an ideal of Θ(L).

Construction 1.4.4. LetH be a subalgebra of Θ(L) such that G ≤ H. Consider

L(H, L) = H⊕ L,

with product
[h1 ⊕ l1, h2 ⊕ l2] = ([h1, h2] + L(x1, x2))⊕ (h1x2 − h2x1),

for l1, l2 ∈ L, h1, h2 ∈ H .

�eorem 1.4.5 (�eorem VI.1 [Mey72]). For a Lie triple system L and subalgebras H of Θ(L)
such that G ≤ H, the algebra L(H, L) is a Lie algebra with involution h ⊕ l 7→ −h ⊕ l. Moreover,
[xyz] = [[x, y], z] holds for all x, y, z ∈ L.

De�nition 1.4.6. �e Lie algebra L(G, L) is called the standard embedding of a LTS L.

Remark 1.4.7. We will use Lie triple systems for virtually all of the TKK constructions in the prelimi-
naries. We will mostly use the standard TKK construction using the standard embedding. However,
for di�erent derivation algebrasH satisfying the conditions of �eorem (1.4.5), we can also consider
L(H, L) and still call it the TKK construction.

13



1 Preliminaries and Context

1.5 Hopf algebras

Suppose that A is a unital Φ-algebra. We can think about the multiplication as a linear map

µ : A⊗A −→ A.

�e unit can be thought of as a morphism

η : Φ −→ A

given by
η(λ) = λ · 1A.

So, we can think of an algebraA as a Φ-module with certain maps µ, η. Properties like associativity
can be expressed as µ ◦ (µ⊗ Id) = µ ◦ (Id⊗ µ).

Similarly, one de�nes a coalgebra A from a comultiplication

∆ : A −→ A⊗A

and counit
ε : A −→ Φ.

�e fact that ε is a counit, means that

(Id⊗ ε) ◦∆ = Id = (ε⊗ Id) ◦∆.

A coalgebra is coassociative if

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆.

It is cocommutative if τ ◦∆ = ∆ with τ(a⊗ b) = b⊗ a.

De�nition 1.5.1. Suppose thatA is both an associative algebra and a coassociative coalgebra with
unit and counit such that ∆, ε are algebra morphisms. In that case, we call A a bialgebra.

An antipode S : A −→ Aop on a bialgebra A is an algebra morphism (or equivalently an algebra
anti-morphism S : A −→ A) satisfying

µ ◦ (S ⊗ Id) ◦∆ = η ◦ ε = µ ◦ (Id⊗ S) ◦∆.

De�nition 1.5.2. A Hopf algebra is a bialgebra with an antipode.

De�nition 1.5.3. For a coalgebra C , a coideal is a linear subspace I ⊂ C such that

∆(I) ⊂ I ⊗ C + C ⊗ C.

Note that for each coideal I of C , C/I also forms a coalgebra. A Hopf ideal of a Hopf algebra H is
an ideal I which is, at the same time, a coideal and satis�es S(I) ⊂ I , ε(I) = 0. We note that H/I
is a Hopf algebra too.

Remark 1.5.4. Observe that we did not require the Hopf algebras in consideration to be commu-
tative. As such, we are considering a broader class than the Hopf algebras which are coordinate
algebras of a�ne group schemes.

De�nition 1.5.5. Let H be a Hopf algebra and x = (1, x1, x2, . . .) a sequence of elements in H
such that ∆(xn) =

∑n
i=0 xi⊗xn−i. We call such an x a divided power series or shortly a dps. If

we write ’let x be a dps’, we mean an in�nite dps with elements denoted as xi. We call a such that
(1, a) forms a divided power series, primitive elements. Elements g such that ∆(g) = g ⊗ g and
ε(g) = 1 are called group like. We denote the submodule of primitive elements in H as P(H).

14



1 Preliminaries and Context

1.6 Jordan algebras

We split the Jordan algebras into linear and quadratic Jordan algebras, even though these are equiv-
alent structures if 1/2 ∈ Φ. Both structures are important. �e linear Jordan algebras are a prime
example of structurable algebras. �e quadratic Jordan algebras display the link with (quadratic)
Jordan pairs.

1.6.1 Linear Jordan algebras

We introduce some de�nitions and remarks from McCrimmon [McC06].

De�nition 1.6.1. A Jordan algebra over Φ, with 1/2 ∈ Φ is a Φ-algebra J equipped with a
commutative bilinear product, designated xy, which satis�es the Jordan identity:

[x2, y, x] = 0,

where [x, y, z] = (xy)z − x(yz) denotes the associator.

De�nition 1.6.2. We say that equalities depending on elements of a certain Φ-algebra M hold
strictly, if these equalities not only hold with elements in M but hold also with general elements
of M ⊗K , for all K ∈ Φ-alg. With a linearization of a polynomial p of homogeneous degree n
in x, we mean any term pi of

p(x+ λy) = p(x) + λp1(x, y) + λ2p2(x, y) + . . .+ λnp(y),

or any linearization of such a pi seen as a homogeneous polynomial in x or y. If p is homogeneous
of degree 2, then we o�en call p1(x, y) the polarization of p.

Proposition 1.6.3. If p = q is an identity between homogeneous polynomials of degree n onM , then
p = q holds strictly if and only if all linearizations of this identity hold.

Proof. Suppose p = q holds strictly, then p = q on M ⊗K[t]. In particular, p(x+ ty) = q(x+ ty)
holds for all x, y ∈M . �is means that

p(x) + tp1 + . . .+ tn−1pn−1 + tnp(y) = q(x) + tq1 + . . .+ tn−1qn−1 + tnq(y),

is satis�ed strictly. We see that even pi = qi must be satis�ed strictly. So, all linearizations of those
equations must also hold.

Suppose that the converse holds. We prove that the equations hold over M ⊗ K . We know, for
x = x1 ⊗ k1 + x2 ⊗ k2, that the equality is satis�ed since

p(x) = p(x1)⊗ kn1 + p1(x1, x2)⊗ kn−1
1 k2 + . . .+ p(x2)⊗ kn2 ,

by comparing terms belonging to ki1k
j
2. Similarly, we see that the equalities between linearizations

of p and q still hold for x. We apply induction on the number of terms in x. Suppose now that
x = x1 ⊗ k1 + y and that all linearizations of p = q are satis�ed for y. �en we can repeat the
same process, to prove that x satis�es the equations and all the equalities between all linearizations.
So, we have shown that all x ∈ M ⊗ K satisfy the identities. Hence, the identities are satis�ed
strictly. �
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Remark 1.6.4. It is possible to generalize the previous proposition to homogeneous maps, see Ap-
pendix B, which resolves the need for M to be an algebra. �is will allow us to use the equivalence
between strictness for equations involving, for example, quadratic forms and the fact that certain
equations involving the corresponding bilinear form must hold. Later, we will encounter another
class of equations that can hold strictly.

Remark 1.6.5. We see that the Jordan identity is homogeneous of degree 3 in x and linear in y. �e
fact that 1/2 ∈ Φ means that the linearizations of the Jordan identity will hold. �is means that
any Jordan algebra satis�es the equations of the above de�nition strictly (cf. [McC06, Linearization
Proposition II.1.8.5]).

Example 1.6.6. Let A be an associative algebra, then A, with operation (x, y) 7→ xy+yx
2 , is a Jordan

algebra (cf. [McC06, Full Example II.3.1.1]). We denote this algebra as A+.

Remark 1.6.7. �ere are two important operators, namely Ux = 2L2
x − Lx2 , with Lx(y) = xy

the le� multiplication, and Vx,yz = Ux,z(y) with Ux,z the polarization of Ux. �ese will exactly
be the operators which make the linear Jordan algebra into a quadratic Jordan algebra. An explicit
expression for Vx,y is 2(Lxy − [Lx, Ly]).

De�nition 1.6.8. A Jordan algebra is special if it is a subalgebra of a Jordan algebraA+ associated
with an associative algebra A.

Construction 1.6.9. �e Tits-Kantor-Koecher (TKK) construction for a linear Jordan algebra J ,
almost exactly in the form of [Mey70a, Satz 2.1] and [Mey70b], is taking the standard embedding,
or any other embedding of �eorem (1.4.5), of the LTS J ⊕ J̄ with operation [(a, b)(c, d)(e, f)] =
(Va,de − Vb,ce, Vb,cf − Va,df). �is construction gets its name from work of Jacques Tits[Tit62],
Max Koecher [Koe67], and Isai Kantor [Kan64].

Remark 1.6.10. �e description of the previous construction is right away fairly general. Meyberg
[Mey70b] investigates the properties for this construction for linear Jordan triple systems. In
[Mey70a] he continues that investigation for these triple systems, but also for ’verbundene paare’,
which are in some sense the linear Jordan pairs (although if 3 is a zero-divisor, it might be wise to
add another axiom). We will leave out the de�nitions of those structures, as they are not terribly
relevant.

�e construction is entirely the same for their quadratic variants. Loos [Loo75, Introduction] refers
[Loo79] (at the time a forthcoming paper) to establish how quadratic Jordan pairs relate to the Lie
algebras from TKK construction, by linking them to certain group sheaves. However, there are
easier ways to construct the corresponding Lie algebra, which do not establish a link with group
sheaves. We prove that this construction works in the section on quadratic Jordan pairs.

1.6.2 �adratic Jordan algebras

�e quadratic Jordan algebras were initially introduced by McCrimmon [McC66].

De�nition 1.6.11. A unital quadratic Jordan algebra is a Φ-module χ, with a quadratic map
U : χ −→ EndΦ(χ), with polarization Ux,z(y) = {x, y, z} = Vx,yz, and 1 ∈ χ, such that

• U1 = Id,

• UxUyUx = UUxy,

• UxVy,x = Vx,yUx,
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for all x, y ∈ χ and such that these equalities remain valid under extension of scalars, i.e. are
satis�ed strictly. A (not necessarily unital) quadratic Jordan algebra is a submodule, closed under
the operation

(x, y) 7−→ Ux(y)

of a unital Jordan algebra χ together with an operation x 7→ x2 such that Ux1 = x2.

De�nition 1.6.12. A homomorphism of a quadratic Jordan algebra is a linear map ψ : J −→ J ′

such that
Uψ(x)(ψ(y)) = ψ(Ux(y)).

�is implies, using the polarization of U , that

{ψ(x), ψ(y), ψ(z)} = ψ{x, y, z},

for all x, y, z.

Remark 1.6.13. It is possible to axiomatize the (non-unital) quadratic Jordan algebras directly. A
direct axiomatization and a proof that the de�nitions are equivalent are given in [Mey72, �eorem
IX.1].

Example 1.6.14. Suppose A is an associative algebra. �en Uxy = xyx makes A into a Jordan
algebra with x2 coinciding with the usual squaring operation on A. We call the quadratic Jordan
algebras which are subalgebras of such Jordan algebras special.

Remark 1.6.15. If 1/2 ∈ Φ the categories of linear Jordan algebras over Φ and quadratic Jordan
algebras over Φ are equivalent. See, for example [Jac69, Section 1.4] or the computations preceding
[Mey72, Section IX, Note in paragraph 9.5].

Construction 1.6.16. �e TKK construction is the same as the TKK construction for Linear Jordan
algebras (1.6.9). To determine the derivation algebras which may be used for the TKK construction,
see Construction (1.7.4). �e possibilities are restricted since the link with group sheaves introduces
another notion of derivation, which con�nes the possible derivations.

1.7 Jordan pairs

We mostly follow Loos [Loo75]. Let V +, V − be Φ-modules and let

Qσ : V σ −→ HomΦ(V −σ, V σ),

be quadratic maps. We also consider maps

Dσ : V σ × V −σ −→ HomΦ(V σ, V σ),

such that Dσ
x,y(z) = Qσx,z(y), with Qσx,z the polarization of Qσ . Note that

Dσ
x,y(z) = Dσ

z,y(x) and Dσ
x,y(x) = 2Qσx(y).

De�nition 1.7.1. Let V = (V +, V −) and Qσ be as just introduced, then V is a Jordan pair if the
following identities hold in all scalar extensions V ⊗K of V :

1. Dσ
x,yQ

σ
x = QσxD

−σ
y,x ,

2. Dσ
Qσx(y),y = Dσ

x,Q−σy (x)
,

17
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3. QσQσx(y) = QσxQ
−σ
y Qσx .

In what comes, we will not write the signs±σ any more, as the signs are uniquely determined once
you �x one as σ. We also will denote Dx,y(z) = {x, y, z}. �e morphisms are the linear maps
satisfying the same condition as for quadratic Jordan algebras if we use the convention to not write
the signs any more.

Remark 1.7.2. We know that a variant of axiom LTS3 of Lie triple systems must hold, speci�cally

{u, v, {x, y, z}} − {x, y, {u, v, z}} = {{u, v, x}, y, z} − {x, {v, u, y}, z} (1.1)

must hold. If 1/6 ∈ Φ, then this equation is even equivalent with the axioms for Jordan pairs.
If 1/2 ∈ Φ, we know that the �rst and second axiom, imply the third one. For a proof of these
statements, see [Loo75, Proposition 2.1].

�eorem 1.7.3. �e TKK construction, applied to a quadratic Jordan pair, yields a Lie algebra.

Proof. We consider V + ⊕ V − together with [xyz] = {x, y, z} if x, z ∈ V σ and y ∈ V −σ . We set
[xyz] = −{y, x, z} if y, z ∈ V σ and x ∈ V −σ . If x, y ∈ V σ , we set [xy·] = 0. Equation (1.1) shows
that this satis�es axiom LTS3 of Lie triple systems. Axiom LTS1 is satis�ed trivially. Axiom LTS2
also holds, since there are only 2 terms which are nonzero, and they are, necessarily, the same term
but with opposite signs. So, we have an LTS and can use the standard embedding. �

Construction 1.7.4. We can not only use the standard embedding of the Lie triple system but all sub-
algebras, containing the inner derivations, of the algebra of all pairs of linear maps ∆ = (∆+,∆−)
such that

∆σQ
σ
x −Qσx∆−σ = V σ

∆σ(x),x.

We call this algebra the derivation algebra. All inner derivations (Vx,y,−Vy,x) satisfy the previous
condition. �is algebra might not be the full algebra Θ(L) of �eorem (1.4.5). �is restriction
corresponds exactly to the condition that 1 + ε∆ is an automorphism of the Jordan pair over the
dual numbers. A reason for this choice is the fact that the TKK Lie algebra with those derivations,
corresponds exactly to the Lie algebra of the algebraic group corresponding to the canonical Jordan
system, corresponding to the Jordan pair (cf. [Loo79, Paragraph 5.14]) (if the modules V ± are
�nitely generated projective modules). If you were to allow more derivations of the Lie triple system
than the ones contained in the derivation algebra, the connection with group sheaves would not be
so strong.

Now, we introduce some notions which are analogous to some new concepts we will introduce.
�ese notions play a relatively important role in what we are trying to generalize.

De�nition 1.7.5. For (x, y) ∈ V σ × V −σ we de�ne the Bergman operator as

B(x, y) = Id−Dx,y +QxQy.

De�nition 1.7.6. We call (x, y) quasi-invertible1 if B(x, y) is invertible.

Proposition 1.7.7 (Proposition 3.2 [Loo75]). For (x, y) ∈ V σ×V −σ , the following are equivalent:

1. (x, y) is quasi-invertible.

2. �ere exists z such that B(x, y)z = x−Qxy and B(x, y)Qzy = Qxy.
1�is is not the conventional de�nition (cf. [Loo75, De�nition 3.1]). However, to use the conventional de�nition, we

should introduce homotopes of Jordan pairs, which is something we will not need for anything else.
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3. B(x, y) is invertible.

4. B(x, y) is surjective.

5. 2x−Qxy belongs to the image of B(x, y).

If this is the case, then
z = xy = B(x, y)−1(x−Qxy),

is the quasi-inverse of (x, y).

Remark 1.7.8. If (x, y) is quasi-invertible, then (y, x) is quasi-invertible with yx = y + Qyx
y (cfr.

[Loo75, Symmetry principle]).

Consider, for a Jordan pair V , the TKK Lie algebra L together with a grading element. �en we can
identify x ∈ V σ with the automorphism

expσ(x) = Id + ad x+Qx,

of L. Similarly we can identify automorphisms h = (h+, h−) ov V , with automorphisms of L by
identifying it with h̃ = h− + h0 + h+, with h0 · d = h−1dh, for 0-graded d. Notice that this action
is well de�ned since an element of the 0-graded part of L is fully determined by its action on the
±1-graded parts.
�eorem 1.7.9 (�eorem 1.4 in [Loo95]). Let V be a Jordan pair, (x, y) ∈ V σ×V −σ , then (x, y)
is quasi-invertible if and only if there exists (z, w) ∈ V σ × V −σ and h ∈ Aut(V ) with

exp+(x) exp−(y) = exp−(w)h̃ exp+(z).

In this case z = xy, w = yx.

1.8 Associative pairs and special Jordan pairs

We introduce some concepts from Loos [Loo95, Paragraph 2.2].
De�nition 1.8.1. An associative pair S over Φ is a pair S = (S+, S−) of Φ-modules together
with trilinear maps

Sσ × S−σ × Sσ −→ Sσ : (x, y, z) 7−→ xyz,

for σ = ±, such that the associativity conditions

uv(xyz) = u(vxy)z = (uvx)yz

hold for all u, x, z ∈ S±, v, y ∈ S∓.
Remark 1.8.2. • Each associative pair can be embedded in an associative algebra.

• Each associative pair forms a Jordan pair under Qx(y) = xyx.
De�nition 1.8.3. A Jordan pair is called special if it is isomorphic to a Jordan subpair of an
associative pair.
Remark 1.8.4. • Equivalently, we could describe a special Jordan pair as a pair (M+,M−) of

submodules of an associative algebra A closed under the operations

Mσ ×M−σ −→Mσ : (x, y) 7−→ xyx,

for σ = ±.

• �e notion of specialness is a generalization of the notion of specialness of a quadratic Jordan
algebra, which is, in itself, a generalization of the same notion for linear Jordan algebras.
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1.9 Kantor pairs

For a triple system T , we mean by a sign-grading of T aZ-grading so that only the±1-graded com-
ponents are non-trivial. We could de�ne Kantor pairs (P+, P−) as sign-graded Lie triple systems
(P+, P−, [·, ·, ·]) (cfr. [AF99, �eorem 7]) where we forget everything, except the operations

V + : P+ × P− × P+ −→ P+,

and
V − : P− × P+ × P− −→ P−,

both coinciding with [·, ·, ·]. �is would stress, immediately, the connection with TKK Lie algebras
(namely take the standard embedding of the LTS). Alternatively, we could de�ne it as pairs of
modules with these operators, satisfying the axioms

[V σ
x,y, V

σ
u,v] = V σ

V σx,yu,v
− V σ

u,V −σy,x v
,

and
Ka,bVx,y + Vy,xKa,b = KKa,bx,y

with Ka,bc = Va,cb − Vb,ca. It is customary to de�ne them only over rings with 1/6. However,
Allison and Faulkner [AF99] de�ne them over rings with 1/2.

1.10 Structurable algebras

De�nition 1.10.1. Suppose that A is an algebra over Φ. A linear map x 7→ x̄ is an involution on
A if it satis�es ¯̄x = x and xy = ȳx̄ for all x and y in A.

Allison [All78] de�ned structurable algebras as a generalization of linear Jordan algebras. Let Φ be
a �eld of characteristic di�erent from 2 and 3 andA a unital algebra over Φ with involution a 7→ ā.
De�ne

Vx,yz = (xȳ)z + (zȳ)x− (zx̄)y.

We call the algebra A structurable if

[Vx,y, Vu,v] = VVx,yu,v − Vu,Vy,xv.

Remark 1.10.2. We will not really consider morphisms of structurable algebras, but it is worth
noting that we consider the involution as an integral part of the structure.

Remark 1.10.3. Suppose that the involution of a structurable algebra is trivial, then, as Remark
(1.7.2) indicates, (A,A) forms a Jordan pair2, i.e. it is a Jordan triple system. �e Jordan triple
systems with a unit (or squaring operation) are exactly the Jordan algebras (cf. [Mey72, �eorem
X.1]3). �erefore, we see that the structurable algebras with trivial involution are exactly the linear
Jordan algebras with a unit.

2In this remark we switch freely between quadratic and linear structures, as this is possible for the characteristics in
consideration.

3�is theorem says something about homotopes. �e 1-homotope has the same operations as the Jordan triple system,
and is a unital Jordan algebra for 1 with U1 = Id.
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We mention the classi�cation of the central simple structurable algebras. We will not de�ne all of
these classes, as the �rst three classes are the only ones that appear in this thesis.

Example 1.10.4. �ere are six classes of central simple structurable algebras:

1. Associative unital algebras A with involution,

2. Linear Jordan algebras,

3. Hermitian structurable algebras (or structurable hermitian algebra of the hermitian form h
as [All79, Section 7] calls it), we introduce these in section 4.4,

4. Forms of tensor product of two composition algebras,

5. Structurable algebras of skew dimension 1,

6. Smirnov algebras.

We will not use the last three classes, so we will not introduce them.

Remark 1.10.5. Originally, Allison [All79, �eorem 11] proved that every central simple struc-
turable algebra is one of the �rst 5 classes of Example (1.10.4), missing the sixth class, for �elds
of characteristic 0. Smirnov [Smi90a] classi�ed these algebras for �elds of characteristic di�erent
of 5, thereby noting [Smi90b] that Allison missed the Smirnov algebra. Building upon the work
of Boelaert, De Medts and herself [BDMS19], Stavrova [Sta20], formulates a di�erent classi�cation
which also includes characteristic 5. �is di�erent classi�cation could lead to an extension of the
classi�cations of [All79], [Smi90a] to include characteristic 5.

Construction 1.10.6. We could explicitly reformulate the TKK construction for structurable algebras,
as Allison [All79, Section 3] did. However, it is far more convenient, in the context of this thesis,
to consider the structurable algebras as a subset of the Kantor triple systems, i.e. P with operation
{·, ·, ·} such that (P, P ) with 2 times the same operation forms a Kantor pair (this can be seen as
a consequence of [All79, �eorem 3] and the de�nition of a Kantor pair as a sign graded Lie triple
system). �is does not mean that there are no advantages in using the explicit construction of
Allison. We will just not need those advantages in this thesis.

Suppose L is a Lie algebra and e, f, h are elements of L such that

[h, f ] = −2f, [h, e] = 2e, [e, f ] = h,

then we call (h, e, f) an S-triple in L. Note that the subalgebra generated by those three elements
is a three dimensional subalgebra. For this Lie algebra there exists a standard family of �nite di-
mensional modules, and they are the only ones for algebraically closed �elds of characteristic 0 (cfr.
[Hum72, Section II.7]). Consider the free modules V k, with bases

{v−k, v−k+2, . . . , vk−2, vk},

and action

h · vi = ivi, e · vi =

(
k + i

2
+ 1

)
vi+1, f · vi =

(
k − i

2
+ 1

)
vi−1.

We are only interested in these modules over �elds with characteristic 6= 2. However, this would
also work for general rings, since the construction ensures that k ≡ i mod 2 so that k±i2 is a well
de�ned integer.

21



1 Preliminaries and Context

�eorem 1.10.7. Suppose Φ is a �eld of characteristic di�erent from 2, 3 and 5, and L is a �nite
dimensional Lie algebra over Φ. �en, there exists a structurable algebra with involution (A, ·̄) and a
Lie algebra D such that L is isomorphic to the TKK Lie algebra of A with zero-graded part D, if and
only if L contains an S-triple such that the algebra G generated by the S-triple satis�es the following
conditions:

1. L is the direct sum of copies of V 1, V 3 and V 5 as a G-module under the adjoint action

2. G does not centralize any non-trivial ideal of L.

Proof. �is is [All79, �eorem 4]. �

Remark 1.10.8. One can specify exactly whatD can be using the derivation and the inner structure
algebra. We will not use this theorem explicitly. However, since we are working with Jordan-Kantor
pairs it is useful to keep in mind that we could use this theorem to identify which Jordan-Kantor
pairs are, in fact, structurable algebras.

Remark 1.10.9. Benkart and Smirnov [BS03, Proposition 2.4], refer to the result of this theorem and
its proof, without assuming that the characteristic of Φ is di�erent from 5.

Remark 1.10.10. It is interesting to note, cf. [AF99, Corollary 15], that the Kantor pairs which admit,
in some sense, a unit are exactly the Kantor pairs coming from structurable algebras. To make this
correspondence work, one needs to generalize structurable algebras so that they are also de�ned
over commutative associative unital rings containing 1/6, as Kantor pairs are de�ned over such
rings. �is is done by Allison and Faulkner [AF93], by de�ning A to be structurable if

[s, b, c] + [b, s, c] = 0

for s = a− ā and a, b, c ∈ A, holds. �is restriction is satis�ed for �elds of characteristic di�erent
from 2 and 3, cf. [All78, Proposition 1].

�e same, namely that having a unit of some sort implies that it comes from an algebra, is also true
for Jordan pairs and �adratic Jordan algebras, cf. [Loo75, Proposition 1.11].

Remark 1.10.11. Despite not delving deeper into the theory for structurable algebras and focussing
more on (Jordan-)Kantor pairs, the generalization of the structurable algebras from Allison and
Faulkner [AF93] corresponds exactly to the structurable algebras which we investigate as Kantor
pairs. Namely, [AF93, �eorem 4.1, �eorem 5.5] shows us that these are the algebras for which
the TKK construction still works.

1.11 Jordan-Kantor pairs

We assume that 1/6 ∈ Φ. Jordan-Kantor pairs were introduced by Benkart and Smirnov [BS03].
Intuitively, they axiomatize what the non-zero graded parts of a 5-graded Lie algebra can be.

We consider a linear Jordan pair J = (J+, J−). �is is a quadratic Jordan pair where you forget
the operators Q and keep the operator D. �e only axiom needed is (1.1) and that Dx,yz = Dz,yx.
For J we consider a special J-bimodule M = (M+,M−) relative to an action ·. We mean by this
that

jσ ·m−σ ∈Mσ,

for jσ ∈ Jσ and m−σ ∈M−σ , and that

Da,bc ·m = a · (b · (c ·m)) + c · (b · (a ·m)).
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From now onwards we will not write those brackets any more, as the brackets can only be placed
in one meaningful way. Alternatively, one can interpret what we are doing as de�ning abc = a(bc).
We suppose, additionally, that there are anti-commutative bilinear maps

k : Mσ ×Mσ −→ Jσ.

�e last operators we need to introduce are operators V on M which make M into a Kantor pair.
However, given the additional axioms we will impose, it is enough to require that equation (1.1)
holds, with Vx,yz =: {x, y, z}.

We write P = (J,M) for the structure with all these operators. Such a P is a Jordan-Kantor pair
if the following identities are satis�ed

1. k(x, z) · y = Vx,yz − Vz,yx,

2. k(x, z) · b · u = Vz,b·xu− Vx,b·zu,

3. k(b · x, y) · z = b · Vx,yz + Vy,x(b · z),

4. Da,bk(x, z) = k(a · b · x, z) + k(x, a · b · z),

5. Da,k(y,w)c = k(a · w, c · y) + k(c · w, a · y),

6. k(k(z, u) · y, x) = k(Vx,yz, u) + k(z, Vx,yu),

for x, u, z ∈Mσ, y, x ∈M−σ, a, c ∈ Jσ, b ∈ J−σ .

Now, we de�ne the structure algebra for P . Set

E = EndΦ(J−)⊕ EndΦ(M−)⊕ EndΦ(M+)⊕ EndΦ(J+).

�e structure algebra Str(J,M) is the set of T ∈ E such that

T · Fx,y = FTx,y + Fx,Ty,

for F = D,V , and

T (a · b) = Ta · b+ a · Tb, Tk(a, b) = k(Ta, b) + k(a, T b),

where a, b, x, y are chosen in such a way that they are always contained in the domain of the
operators.

For a ∈ J+, b ∈ J−, there exists a corresponding δ(a, b) ∈ Str(J,M). For (x, y) ∈M+×M− there
exists a similar such element which we will denote v(x, y). Speci�cally, we de�ne δa,bc = Da,bc,
δa,bd = −Db,ad, δ(a, b)x = a ·(b ·x) and δ(a, b) ·y = −b ·(a ·y), for a, c ∈ Jσ, b, d ∈ J−σ , x ∈Mσ

and y ∈ M−σ . For x ∈ Mσ, y ∈ Mσ one has a similar v(x, y) which acts on M as expected and
on Jσ by v(x, y)a = k(a · y, x). It acts similarly on J−σ , but with an opposite sign. �ese elements
span the inner structure algebra InStr(J,M).

�ere is a unique way to construct a 5-graded Lie algebra L(J,M,D) out of these elements once
you �x a Lie subalgebra D of Str(J,M) containing InStr(J,M), namely put

L(J,M,D) = J− ⊕M− ⊕D ⊕M+ ⊕ J+,

with the graded parts exactly corresponding to how we wrote L(J,M,D) down. �e Lie brackets
not, or only, involving D are entirely determined from the operators k, ·. Moreover, D acts as a Lie
algebra on the rest of L(J,M,D) while the Lie brackets with a result that should be zero-graded
are entirely determined by the elements δ(a, b), v(a, b).
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�eorem 1.11.1 (�eorem 4.3 of [BS03]). �e space L(J,M,D) is a Lie algebra. Moreover, D
acts, under the adjoint map, faithful on the rest of L(J,M,D).

One can also prove the converse.

�eorem 1.11.2 (�eorem 4.5 of [BS03]). Suppose L is a 5-graded Lie algebra

L =
5⊕

i=−2

LLi ,

then

• (L2, L−2) form a Jordan pair with [[a, b], c] = Da,bc,

• (L1, L−1) forms a special J-bimodule under a · x = [a, x],

• the pair (J,M) with Vx,yz = [[x, y], z] and k(a, b) = [a, b] forms a Jordan Kantor pair, denoted
P (L),

• if the adjoint action of L0 on the rest of the Lie algebra is faithful, then L is isomorphic to a Lie
algebra L(P (L),D). If, additionally, L is generated by L±1, L±2, then D = InStr(P (L)).

In order to not confuse ourselves, we shall use TKK(P,D) to designateL(P,D), so that it is obvious
that we consider the TKK Lie algebra.

We formulate a crucial property that allows us to identify which Jordan-Kantor pairs are Kantor
pairs. We mean by the Jordan-Kantor pair associated with a Kantor pair, the unique Jordan-Kantor
pair we get from applying the previous theorem on any TKK Lie algebra associated with the Kantor
pair.

Proposition 1.11.3 (Proposition 7.5 of [BS03]). A Jordan-Kantor pair P = (J,M) is isomorphic
to the Jordan Kantor pair associated to some Kantor pair M if and only if

• J acts faithfully on the bimodule M ,

• Jσ = k(Mσ,Mσ) for σ = ±.

Remark 1.11.4. �ere exists another class of Jordan-Kantorpairs, namely the J-ternary algebras.
�ey were introduced by Allison [All76]. �ese are precisely the Jordan-Kantor pairs for which
J has units. �is means that J is two times the same linear Jordan algebra. For these, there is
an analogous theorem to �eorem (1.10.7) where the modules are not V 1, V 3, V 5 but V 1, V 2, V 3,
corresponding to the fact that the elements of the S-triple e, f, h are±2 or 0 graded, instead of±1
or 0.

1.12 Jordan Pairs and Hopf algebras

We recall some essential theorems from the article [Fau00] wri�en by Faulkner. �ese should allow
the reader to interpret what we will do as a generalization of that article.

De�nition 1.12.1. A dps (1, x1, x2, . . .) in a Z-graded Hopf algebra is homogeneous if there
exists a σ = ± such that each xi is σi-graded. We remark that it is conventional to let σ be any
σ ∈ Z, but we will not consider any such homogeneous divided power series.
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�eorem 1.12.2 (�eorem 5 of [Fau00]). If A is a Z-graded Hopf algebra such that

• P(A) = P−1 ⊕ P0 ⊕ P1,

• there is a homogeneous divided power sequence (1, x1, x2, . . .) over all x ∈ Pσ , σ = ±1,

then (P1,P−1) is a Jordan pair with Qx(y) = x2y − xyx + yx2, with x2 the second element of the
unique homogeneous divided power sequence over x.

In that article he considers binomial divided power maps. To be speci�c, let V be a Φ-module and
let A by a unital associative algebra over Φ. A sequence

ρ = (ρ0, ρ1, . . .)

of maps ρn : V −→ A is a sequence of binomial divided power maps provided ρ0(v) = 1 and
ρn is a homogeneous map (cfr. Appendix B) of degree n whose (i, j)-linearization is (u, v) 7−→
ρi(u)ρj(v). We will denote ρi(v) as vi. �ese maps are best characterized in terms of the following
corollary.

Corollary 1.12.3 (Corollary 7 of [Fau00]). If ρ is a sequence of maps ρn : v −→ vn with v0 = 1,
then ρ is a sequence of binomial power divided maps if and only if for each extension K of Φ there is
an extension ρ′n : V ⊗K −→ A⊗K satisfying

• (λv)n = λnvn,

• (v + u)n =
∑

i+j=n viuj ,

for all u, v ∈ V ⊗K .

For such binomial divided power maps, we can de�ne

ad(n)
x (y) =

∑
i+j=n

(−1)jxiyxj .

�e divided power representations of a Jordan pair V = (V +, V −) are exactly the pairs ρ =
(ρ+, ρ−) of binomial divided power maps from V σ to an associative unital Φ-algebra A such that
for all extensions K of Φ and all x ∈ V σ ⊗K , y ∈ V −σ ⊗K ,

ad(k)
x (yl) =

{
0 k > 2l,

Qx(y)l k = 2l.

It is possible to construct the universal divided power representation U for a Jordan pair V .

�eorem 1.12.4 (�eorem 15 in [Fau00]). �e universal divided power representation γ in U of a
Jordan pair V is a Z-graded cocommutative Hopf algebra and γσ1 is injective.

Faulkner also proves that this universal representation, at least is the V σ are free Φ-modules, sat-
is�es the conditions of �eorem (1.12.2), cf. [Fau00, Corollary 28]. To achieve that, he makes use of
the fact that for all x ∈ V +, y ∈ V − we can de�ne∑

hp,qs
ptq = h = exp(v) exp(−sx) exp(−ty) exp(u),
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with u the quasi-inverse of (sx, ty) and v the quasi-inverse of (ty, sx). �e crucial property is that
each binomial divided power representation satis�es the exponential property, i.e.

hpq = 0 if p 6= q.

�ese are not the only interesting results of that article. However, these give the necessary back-
ground to understand what this thesis generalizes. Speci�cally, sequence Φ-groups generalize
divided power binomial maps. �ey generalize these maps in such a way that V does not necessar-
ily have to be a Φ-module but can be a group with a certain kind of multiplication. Sequence pairs
correspond to divided power representations of a Jordan pair in the sense that there is a pairing
between sequence groups with 2 operators T and Q, instead of a single operator Q. We use these
generalizations to generalize all the important theorems of the article. We will also generalize most
of the results of another article [Fau04] of Faulkner.
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In this chapter, we introduce the main concepts that will be used throughout this thesis. Firstly, we
introduce sequence groups. �ese generalize the notion of sequences of binomial divided powers,
as introduced by Faulkner [Fau00, Section 5]. Secondly, we formulate an essential theorem, namely
�eorem (2.3.3). �is theorem provides us with all the necessary ingredients to de�ne sequence
pairs. �e sequence pairs themselves are a generalization of divided power representations of Jor-
dan pairs. Once the sequence pairs are de�ned, we prove that the two main classes of interest,
namely Jordan-Kantor pairs (under a certain condition) and a certain class of Hopf algebras, de�ne
sequence pairs.

2.1 Sequence groups

De�nition 2.1.1. LetA be an associative unital Φ-algebra. Suppose thatD ⊂ AN is a set of in�nite
sequences in A with d0 = 1 for all d ∈ D. Assume that D is closed under the following operations

1. λ · (1, x1, . . . , xn, . . .) = (1, λx1, . . . , λ
nxn, . . .),

2. (1, x1, . . . , xn, . . .)× (1, y1, . . . , yn, . . .) = (1, x1 + y1, . . . ,
∑

i+j=n xiyj),

for all λ ∈ Φ. If D, together with the operation ’×’, forms a group with unit (1, 0, 0, . . .), then we
call D a sequence group in A. We will sometimes denote elements x of D, for which there exists
a natural number n such that xm = 0 for all m > n, as (1, x1, . . . , xn) and drop all the zeros.

Remark 2.1.2. Notice that we can identify a sequence group in A with a subgroup of the units in
A[[t]]. Speci�cally, we can map

(1, x1, x2, . . .) 7−→ 1 + tx1 + t2x2 + · · · .

�is is a group isomorphism. Note, moreover, that the scalar multiplication on the sequence group
is given by the substitution of λt for t. It will o�en be more useful to think about these groups as
groups of sequences. In the context of power sequences, we mean by exp(tx) = 1+tx1+t2x2+· · · .
In fact, we will use the notation exp a bit more o�en. If the sequences all have �nite length < n,
then it is perfectly �ne to consider exp(x) = 1 + x1 + x2 + · · · . �e second exponential is not
necessarily injective, so we should use that exponential carefully.

Lemma 2.1.3. Let G be a sequence group and λ ∈ Φ. �e map

(λ·) : G −→ G : g 7−→ λ · g

is a group automorphism of G.

Proof. Suppose that d = (d0, d1, . . .), e = (e0, e1, . . .) are elements ofG and de = ((de)0, (de)1, . . .).
We compute

λn(de)n = λn
∑
i+j=n

diej =
∑
i+j=n

λidiλ
jej =

∑
i+j=n

(λ · d)i(λ · e)j = ((λ · d)(λ · e))n.

Hence, the map g 7−→ λ · g is a group automorphism. �
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2 Sequence groups and pairs

�e notion of a sequence group will be useful. However, we do not want that such a group only
exists in a �xed algebra A. To escape a �xed algebra A, we identify exactly what parts of the
structure need to be preserved. �ere are three important components of these kinds of groups.
Firstly, there is the group structure. Secondly, we have a multiplication with scalars. And lastly,
we have a sequence of subgroups H i, which are the subgroups of G consisting out of sequences
h = (1, h1, . . . , hi, . . .) such that hj = 0 if j ≤ i. We note that [G,H i] ⊂ H i+1 for each i and that
each of these H i is normal in G.

De�nition 2.1.4. We call a sequence group G such that Hn = 0 a sequence group of class n. A
group homomorphism φ : G −→ G′ between sequence groups which preserves the scalar mul-
tiplication is called a sequence group representation1. If G′ is a sequence group in a unital,
associative algebraA, then we call this morphism a sequence group representation inA. If the rep-
resentation also satis�es φ(H i) ⊂ H ′i and φ−1(H ′i∩ Im(φ)) ⊂ H i, then we call the representation
faithful. We call it essentially faithful, if only φ−1(H ′i ∩ Im(φ)) ⊂ H i.

Proposition 2.1.5. Suppose that G is a sequence group. Let ρ : G −→ AN be a map, then ρ is a
sequence group representation if and only if the following three properties hold

• ρ(λ · g) = λ · ρ(g),

• ρ(gh) = ρ(g)× ρ(h),

• ρ(1) = (1).

Moreover, if G is only an abstract group with a scalar multiplication, ρ is injective and the previ-
ous properties hold, then we can endow G with a sequence group structure such that ρ is a faithful
representation.

Proof. We note that these properties are necessary. So, we prove that they are su�cient. First, we
prove that ρ(G) forms a sequence group. We note that ρ(G) is closed under the multiplication and
the scalar multiplication of De�nition (2.1.1) if the �rst two properties hold. �e third property
ensures that ρ(G) has the right unit and that ρ(G) is closed under inverses. So, ρ(G) is a group.
Note that ρ : G −→ ρ(G) is a morphism of groups by the second property. By the �rst property, ρ
is compatible with scalar multiplication. So, ρ is a morphism of sequence groups.

For the moreover part, we note that there is a unique way to endow G with subgroups H i such
that ρ : G −→ ρ(G) is a faithful sequence group representation. �

Remark 2.1.6. If we choose to describe a sequence group G �rst as an abstract group with some
sort of scalar multiplication and then apply Proposition (2.1.5) on ρ : G −→ AN to prove that it a
sequence group, then it is useful to think about ρ as a de�ning representation.

We will use ρ : G −→ A to denote a sequence group representation of a sequence group G in an
algebra A corresponding to the sequence of maps ρi : G −→ A, i.e. ρ(g) = (ρ0(g), ρ1(g), . . .). We
will also use gn to denote the element ρn(g).

For the next example, we rely on a generalization of the Campbell-Baker-Hausdor� theorem which
allows us to carry over the results of this theorem to more general rings under certain conditions.

1�is naming convention might seem strange. However, we will almost always think of G′ as a sequence group in a
unital associative algebra A.
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2 Sequence groups and pairs

�eorem 2.1.7 (Campbell-Baker-Hausdor�, �eorem 9 in [AF99]). Let FΦ{x, y} denote the
free associative algebra generated by x and y, and let Ik be the ideal spanned by all homogeneous
elements of total degree ≥ k. If 1/n! ∈ Φ, let z̄ = z + In+1 ∈ FΦ{x, y}/In+1, and let exp(z̄) =∑n

k=0 z
k/k!. �en

exp(x̄) exp(ȳ) = exp(w̄),

where
w = x+ y + [x, y]/2 + [[x, y], y]/12− [[x, y], x]/12 + . . . ,

is an element of the Lie subalgebra of FΦ{x, y} generated by x and y.

Example 2.1.8. Suppose 1/6 ∈ Φ. Let P be a Jordan-Kantor pair over Φ, with associated 5-graded
Lie algebra L = TKK(P, InStr(P ) + Φζ) containing a grading element ζ . Consider the groups
Gσ = Lσ × L2σ with group operation

(a, b) · (c, d) = (a+ c, b+ d+ [a, c]/2)

and scalar multiplication
λ · (a, b) = (λa, λ2b).

We de�ne H1
σ as L2σ and want to prove that Gσ is a sequence group of class 2.

We now construct a faithful sequence group representation of Gσ . �e algebra E = EndΦ(L) is
a 9-graded associative algebra if we consider φ ∈ E to be an element of Ek (the submodule of
elements which have as grading k) if φ(Lj) ⊂ (Lj+k) for all j. Consider the map

ρσ(a, b) = ' exp(a+ b)' = (1, exp(a+ b)σ, . . . , exp(a+ b)4σ)

= (1, (ad a), (ad a)2/2 + (ad b), . . . ,
∑

i+2j=4

(ad a)i/(i!)(ad b)j/(j!)),

where exp(a)i denotes the component of exp(a) inEi. It is obvious that the �rst and third property
listed in Proposition (2.1.5) hold. Furthermore, the representation is injective since (ad a)(h) =
iσa where h is the grading element and a ∈ Lσi. �e second property of Proposition (2.1.5) is a
consequence of the Campbell-Baker-Hausdor� theorem, as stated earlier, with n = 4.

Lemma 2.1.9. If ρ : G −→ A is a sequence group representation, then

ρ̂ : G −→ EndΦ(A),

with
ρ̂n(g)(a) = ad(n)

g (a) =
∑
k+`=n

gka(g−1)`,

is a sequence group representation. Moreover, the following equality holds

ad(n)
g (ab) =

∑
k+`=n

ad(k)
g (a)ad(`)

g (b).

Proof. We use Proposition (2.1.5) to prove the �rst part. �e �rst property of that proposition is
easily veri�ed by

λnad(n)
g (a) =

∑
i+j=n

λigiaλ
j(g−1)j =

∑
(λ · g)ia((λ · g)−1)j = ad(n)

(λ·g)(a),
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where we used, in the second equality, that g 7→ λ·g is a group automorphism and thatλigi = (λ·g)i
in A. �e second property holds since∑

i+j=n

ad(i)
g ad(j)

h (a) =
∑

i+j+k+`=n

gihja(h−1)k(g
−1)`

=
∑
c+d=n

(gh)ca((gh)−1)d

= ad(n)
gh (a).

�e third property is obvious. �erefore, ρ̂ is a sequence group representation. Now, we prove the
second statement of the lemma by computing

ad(n)
g (ab) =

∑
i+j=n

giab(g
−1)j

=
∑

p+q+r+s=n

gpa(g−1)qgrb(g
−1)s

=
∑
i+j=n

ad(i)
g (a)ad(j)

g (b),

where the second equality holds since

∑
r+q=m

(g−1)qgr = (g−1g)m = (1)m =

{
0 m > 0

1 m = 0
. �

De�nition 2.1.10. We call the representation ρ̂ constructed from a representation ρ : G −→ A as
executed in the previous lemma, the adjoint representation.

2.2 Sequence Φ-groups

In this section, we identify a speci�c subclass of sequence groups which will be the sequence groups
of interest during the rest of this thesis. �e goal is to identify speci�c sequence groupsG of class 2
in algebras A such that for all K ∈ Φ-alg, there exists a well-determined G(K) that is a sequence
group in A ⊗ K . We assume in this section that all K are elements of Φ-alg, while A is just an
associative unital Φ-algebra.

We suppose that G has a Φ-module structure so that it is isomorphic to G/H1 ×H1 with opera-
tion (a, b)(c, d) = (a + c, b + d + ψ(a, c)) for a bilinear form ψ. We also assume that the scalar
multiplication on G is related to the Φ-module structure by

λ · (a, b) = (λa, λ2b).

If we use a scalar multiplication without any reference to which one it is, it is the scalar multipli-
cation on the group. If we want to use the module multiplication, which is almost always on H1,
we will state clearly that we consider that multiplication and if it is on H1, we will o�en denote it
as ·H . If G is of the previous form, then we call G a potential sequence Φ-group2.

2�is is a de�nition of which we only make use in this section. �e goal of this section is to �nd polynomial equations
which guarantee that a potential sequence Φ-group has a faithful sequence Φ-group representation. �e notion used
outside of this section, will exactly be the one of a sequence Φ-group.
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De�nition 2.2.1. We call a sequence group representation of a potential sequence Φ-group even
if ρ(H1)2n+1 = 0 for all n.

Remark 2.2.2. We assume henceforth that all sequence group representations of potential se-
quence Φ-groups, are even.

Note that f(a) = (a, b)2 − b2 = (a, 0)2 is well de�ned for all (a, ·) ∈ G. We prove that it is a
quadratic form. First, we note that f(λa) = (λa, 0)2 = λ2(a, 0)2. We also see that F (a, c) =
f(a + c) − f(a) − f(c) = (a + c, ψ(a, c))2 − ψ(a, c)2 − (a, 0)2 − (c, 0)2 = a1c1 − ψ(a, c)2. We
prove that F is a symmetric bilinear form. It is clearly bilinear. Moreover, we see that F (a, c) =
a1c1 − ψ(a, c)2, while we know that [a1, c1] = [a, c]2 = ψ(a, c)2 − ψ(c, a)2. Hence F (a, c) is
symmetric. �is means that f is a quadratic form.

Suppose that there exists a representation G(Φ) −→ A. We want to �nd conditions which are
equivalent to the existence of sequence group representations of G(K) = (G/H1 ×H1) ⊗K in
A ⊗K . We call representations ρ : G(Φ) −→ A which extend to representations ρ : G(K) −→
A⊗K sequence Φ-group representations. IfH1 = 0 we already know what sequence Φ-group
representations are.

Lemma 2.2.3. Suppose ρ is a sequence group representation of a potential sequence Φ-group G(Φ)
with H1 = 0 in a Φ-algebra A. �en ρ : G(K) −→ A⊗K is a sequence group representation for all
K if and only if for all u, v ∈ G(Φ) and k, l ∈ N the following equalities hold

• [vk, ul] = 0,

• vkvl =
(
k+l
k

)
vk+l.

Proof. �is is a reformulation of [Fau00, Lemma 6 and Corollary 7]. �

Remark 2.2.4. If we assume that all representations are even, then we can giveH1 another structure
as a sequence group, nonisomorphic to the structure of H1 seen as a sequence subgroup of G.
Speci�cally, H1 can be seen as the sequence group h→ (1, h1, h2, . . .) which is embedded in G by
mapping h → (1, 0, h1, 0, h2, . . .). �is embedding is not a morphism of sequence groups, as the
scalar multiplication is not the same. �e �rst scalar multiplication on the �rst realization of H1 as
a sequence group, is the scalar multiplication on H1 as a Φ-module coinciding with the Φ-module
structure on G. Seen as a subgroup of G, it has another scalar multiplication. �ey are related by
λ ·G h = λ2 ·H h. �e fact that H1 can be seen as a sequence group with (H1)

1
= 0, implies that

if G is a sequence Φ-group, then H1 satis�es Lemma (2.2.3).

With the previous remark in mind, we seek for a generalization of Lemma (2.2.3) to potential se-
quence Φ-groups. Now, we identify two necessary conditions which correspond to speci�c prop-
erties of sequence Φ-group representations, that generalize the conditions of the previous lemma.
Later, we will prove these conditions to be su�cient.

Lemma 2.2.5. If ρ : G −→ A is a sequence Φ-group representation, then the following equalities
must hold for all x, y ∈ G(Φ):

xjxi =
∑

a+2b=i+j

(
a

i− b

)
xa(x

2
1 − 2x2)2b, (2.1)

[xj , yi] =
∑
a+c=i
b+c=j
c6=0

yaxb[x, y]2c, (2.2)
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where (x2
1 − 2x2) represents a well-determined element of H1(Φ). Moreover, if these equations hold

for a potential sequence Φ-group G′, then we know that µx · λx = (µ + λ)x · (λµx2
1 − 2λµx2) and

x(λy) = (λy)x[x, λy] as sequences in A⊗K for all K ∈ Φ-alg and x, y ∈ G′(Φ).

Proof. We compute h in x · λx = (1 + λ)x · h. We know that (x · λx)2 = x2 + λx2
1 + λ2x2.

On the other hand, we get (1 + λ)2x2 = x2 + λ2x2 + λ2x2. So, the di�erence of these two is
λ(2x2−x2

1). We also know that the �rst two coordinates are equal. �erefore, we need h ∈ H(K)
with h2 = −λ(2x2 − x2

1). �is h exists, since x(−x) = (1, 0, 2x2 − x2
1, . . .).

Now, we identify a necessary and su�cient condition so that x ·λx = (1+λ)x ·h holds for λ ∈ K .
Namely, for all i and n, the terms belonging to λi in the n-th coordinate should always be equal to
each other. �e n-th coordinate of (1 + λ)x · h equals

∑
a+2b=n(1 + λ)axah2b. So, comparing the

terms belonging to λi, we get

xjxi =
∑

a+2b=i+j

(
a

i− b

)
xa(2x2 − x2

1)2b.

�is also proves the necessity of equality (2.1).

Now we prove that equality (2.2) must hold. �is equality corresponds to x(λy) = (λy)x[x, λy].
�is means that for all i and n, the terms in (x · λy)n = (λy · x[x, λy])n belonging to λi should be
the same. As [x, λy] equals λ ·H [x, y] where ·H denotes scalar multiplication on H1 instead of the
scalar multiplication on G, we get that the term belonging to λi in the right hand side equals∑

a+c=i
a+b+2c=n

yaxb[x, y]2c.

�is yields equality (2.2), where we need to bring the term with c = 0 to the le� hand side. �

Note that the previous lemma generalizes the properties of the preceding lemma, as

[x, y], (x2
1 − 2x2) ∈ H1 = 0

implies that a lot of the terms will be zero.

Now, we prove that a sequence group representation of a potential sequence Φ-group, satisfying
the two equations of Lemma (2.2.5) is a sequence Φ-group representation. As we have already
mentioned, the part ρ : H1 −→ A is already compatible with scalar extension.

Proposition 2.2.6. A potential sequence Φ-group G with sequence group representation

ρ : G −→ A

has a sequence Φ-group representation G −→ A extending ρ if and only if equalities (2.1) and (2.2)
hold.

Proof. �ese equalities are necessary. We prove the su�ciency.

We �rst de�ne ρ : G(K) −→ A⊗K . We already know that

ρ : H(K) −→ A⊗K

is well de�ned and satis�es all necessary properties if equalities (2.1) and (2.2) hold. Note, addi-
tionally, that each h ∈ H(K) commutes with every gm for g ∈ G(Φ), as (

∑
λihi)ngm equals
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gm(
∑
λihi)n because each (hi)j for hi ∈ H1(Φ) commutes with every g ∈ G(Φ). So, we de-

�ne ρ : G(K) −→ A ⊗ K inductively, under the assumption that G/H1 is a free Φ-module
with well-ordered basis3 (gi)i∈I . We consider the well-ordering to be on I . We have already
determined ρ(0, h) for (0, h) ∈ H1(K). We suppose now that we have determined ρ(g, h) for
(g, h) ∈ Vi(K)×H1(K) with Vi the submodule of G/H1 spanned by the elements (gj)j<i. Sup-
pose that we have already de�ned ρ for all basis elements which precede g′ = gi in such a basis,
then for all µ ∈ K and g ∈ Vi(K) we de�ne4

ρn(g + µg′, h+ µψ(g, g′)) =
∑

i+j+2k=n

µjgig
′
jh2k,

where g′ has as representation (1, g′1, f(g′1), . . .). Observe that this de�nition satis�es

ρn(g, a+ b) =
∑

i+2j=n

ρi(g, a)b2j =
∑

i+2j=n

b2jρi(g, a),

using the fact that b2j commutes with every gi for g ∈ G(K). Note that

g′g′′ = (1, g′1 + g′′1 , f(g′1 + g′′1) + ψ(g′1, g
′′
1)2, . . .),

for g′, g′′ ∈ G/H1(Φ).Moreover, for these speci�c elements we compute that 2g2−g2
1 = −ψ(g, g),

since 0 = f(0) = f(g1) + f(−g1)− g2
1 + ψ(g, g) = 2g2 − g2

1 + ψ(g, g). So, equation (2.1) shows
that

((λg′, 0)(µg′, 0))n = (λg′ + µg′, λµψ(g′, g′))n

for all g′ ∈ G(Φ).

It follows from the de�nition of ρn and equation (2.1) that

((g, h)(g′, h′))n = ((g, 0), (g′, 0)(0, h+ h′))n = (g + g′, h+ h′ + ψ(g, g′))n

for all g, g′ ∈ G/H1(K) where the basis elements ofG/H1 contributing in g all precede, or coincide
with the minimal of, the ones contributing in g′. To prove that this property does not depend on
the order of the basiselements which contribute, we need equation (2.2). �is equation lets us
interchange elements which are in the wrong order, as it lets us use (x · λy)n = (λy · x[x, λy])n
with [x, λy] = λ(ψ(x, y)−ψ(y, x)) for x, y ∈ G(Φ), λ ∈ K . To be speci�c, we get that if g ∈ Vi(K)
then

((gi, 0), (g, 0))n =
∑

a+b+2c=n

(g, 0)a(gi, 0)b(0, ψ(gi, g)− ψ(g, gi))2c = (g + gi, ψ(gi, g))n,

where the �rst equality holds by seeing g as a K-linear combination of k elements of G(Φ) and
interchanging gi with each of these k elements one at a time and the fact that H1(K)n commutes
with G(K)m for each n and m.

3Such a basis always exists for free modules, by the axiom of choice, though the existence is probably easier to prove
from Zorns lemma. We note that on well-ordered sets trans�nite induction applies, i.e. prove that a property P
holds for the minimal element 0 and then prove that if P holds for all g < h, then P also holds for h. We prove the
trans�nite induction principle. Suppose that h is the minimal element such that P does not hold. So, we know that
P holds for all g < h. �erefore, P holds for h, a contradiction. So, there is no minimal element h such that P does
not hold.

However, the proof of this proposition can be made to work without the axiom of choice by just doing induction on
the number of basis elements contributing to an element. �e di�erence is then, that you start with a not necessarily
well-de�ned representation and prove that it is well-de�ned instead of starting with a well-de�ned representation
and computing that the product coincides with what the product should be.

4�e ’+µψ(g, g′)’ is part of the de�nition, to ease the formulation of the de�nition. As each sequence of H1(K)
commutes with every sequence of G(Φ), we could divide the sequence (0, µψ(g, g′))n out, to get an equivalent
de�nition.
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We can generalize this to general linear combinations, instead of a single gi, by seeing the linear
combination as a product

(
∑

λigi, 0) = (
∏
i

(λigi, 0)) · (0, h),

which corresponds exactly to how we de�ned each of these coordinates.

Lastly, we observe that this proposition will also hold for potential sequence Φ-groups which are
not necessarily free if they are a quotient of a free sequence Φ-group. �is is always the case. �

De�nition 2.2.7. When we speak, as we were able to reduce the property sequence Φ-group
representation to one expressable in polynomial equations, about sequence Φ-groups5 we mean
potential sequence Φ-groups with a de�ning representation satisfying equations (2.1) and (2.2), or
equivalently potential sequence Φ-groups G with a de�ning representation ρ : G −→ A such that
ρK : G(K) −→ A ⊗K are also representations. For sequence Φ-groups, it is only natural to just
consider sequence Φ-group representations.

Remark 2.2.8. In what follows, we will be interested inG(Φ[[s, t]]) with representations inA[[s, t]].
�is, technically6, does not fall under the previous construction. So, we sketch why we can, with-
out problem, speak about formal power series. Consider ρG(Φ[t]) −→ A ⊗ Φ[t]. We can endow
A⊗ Φ[t] with the metric d(f, g) = 2−i with i degree in t of the term with the lowest such degree
in f − g. �en A[[t]] is the completion of A⊗ Φ[t] with respect to this metric. We can also de�ne
G(Φ[[t]]) using the same technique. �ere is a unique equicontinuous ρΦ[[t]] mapping G(Φ[[t]]) to
A[[t]]. Moreover, since all necessary conditions are polynomial equations, and since the metrics are
chosen so that the representation, addition, multiplication and scalar multiplication are equicon-
tinuous, we know that all conditions making use of only these operations will still hold for the
unique equicontinuous extensions of these maps to the closures. Note that all conditions for the
representation to be a sequence Φ-group representation, are of that form.

De�nition 2.2.9. �e (i, j)-linearization of a sequence Φ-group representation is

(x, z) 7−→ xizj .

It is also possible to de�ne the (k1, . . . , kn)-linearization inductively.

Remark 2.2.10. Suppose that ρ : G −→ A is a sequence Φ-group representation. Note that a
polynomial identity on an algebra A, which is stated in xi’s for x ∈ G(Φ) is satis�ed strictly if
and only if the polynomial identity and all its linearizations hold. Speci�cally, we can linearize a
polynomial p(x1, . . . , xn) formed out of monomials

∏
(i,j)∈I(xi)j for some ordered �nite subset I

of N+
≤n × N, by formally comparing terms belonging to λj of

p(x1, . . . , xi · λzi, . . . , xn).

By applying recursion until everything is a multilinear map, we get all the linearizations. If all the
linearizations of a polynomial identity hold, then the polynomial identity will hold strictly. One
can prove this analogous to Proposition (1.6.3). Speci�cally, we already know that the statement is
true for the restriction of the polynomials to H1. So, if (a, 0)(c, h+ t) = (a+ c, h). We see that

p(a+ c, h) = p(a) + p1((a, 0), (c, h+ t)) + . . .+ p(c, h+ t),

5We will in what comes not make reference to the fact that the sequence groups have class 2, since that would be
repetitive verbiage which does not provide additional information.

6InA⊗Φ[[s, t]] we only allow �nite linear combinations of terms a⊗f , whilst we do want in�nite linear combinations
of terms fa · a, though only �nitely many for each di�erent monomial sitj .
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2 Sequence groups and pairs

which, if applied to all linearizations of p proves that all linearizations hold for bigger linear com-
binations. �erefore, we can use the fact that all linearizations hold as a substitute for the fact that
such a polynomial equation holds strictly.

Remark 2.2.11. If 1/2 ∈ Φ, it is possible to reparametrize a sequence Φ-group to be in some standard
form. Suppose G is a sequence Φ-group over Φ with de�ning representation in A. Speci�cally, let
x = (1, x1, x2, . . .) ∈ G(K), then

x(−x) = (1, 0, 2x2 − x2
1, . . .) ∈ H1(K).

As such, y = (1, 0, x2
1/2− x2, . . .) is an element of H1(K). We compute that

xy = (1, x1, x
2
1/2, . . .).

We say that a sequence Φ-group over a ring Φ with 1/2 is in standard form if it satis�es

(x, 0) 7−→ (1, x1, x
2
1/2, . . .).

We note that, if reparametrized, the sequence group has operation (a, b)(c, d) = (a + c, b + d +
[a, c]/2), where [a, c] can either be seen as the commutator in the group, or as the Lie commutator
in any de�ning representation.

2.3 An essential theorem

In this section, we formulate a certain theorem that will be useful in many di�erent ways. Firstly, it
will allow us to construct some divided power series out of speci�c families of elements in a Hopf
algebra. At the same time, it can be used to construct exponentials in Lie algebras from similar
families of elements. Lastly, the elements of algebras de�ned by the theorem will be used to de�ne
sequence pairs and will play a very important role throughout this thesis. To prove all these things
at the same time, we will need a fairly general formulation of the theorem. We call it a fairly general
formulation, as it is, in essence, a theorem about divided power series in Hopf algebras.

To prove the theorem of this section, we �rst prove the theorem in a very special case. Suppose
that Z is a free unital associative Z-algebra generated by the elements (a, b) for a, b ∈ N, b > 0.
We also use (a, 0) to denote 0 for a > 0 and set (0, 0) = 1. We consider the unique morphism on
Z de�ned by

∆(a, b) =
∑
i+j=a
k+l=b

(i, k)⊗ (j, l).

Remark 2.3.1. We could also de�ne a counit ε : Z −→ Z by se�ing ε(a, b) = 0 for a 6= 0 6= v and
ε(1) = 1. With this counit, Z , together with ∆ and ε, forms bialgebra. However, we will not need
this bialgebra structure. In the current description of Z it is not obvious that we could endow it
with an antipode. However, the following lemma shows that Z is generated by elements which are
elements of divided power series (1, [a, b], [2a, 2b], . . .). For these elements it is easier to compute
the antipode. Speci�cally, if one computes the inverse of the power series (

∑
tn[na, nb])−1 =∑

tn[na, nb]′, then one gets the antipode by se�ing S[na, nb] = [na, nb]′.

Lemma 2.3.2. �ere exist elements [a, b] ∈ Z for a, b ∈ N, b > 0 such that

(n,m) =
∑

t∈U(n,m)

t,
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with

U(n,m) = {[a1, b1] . . . [ak, bk]|a1/b1 < a2/b2 < . . . < ak/bk,
∑

ai = n,
∑

bj = m},

where, for each a, b with gcd(a, b) = 1 and each n ∈ N, we have

∆[na, nb] =
∑
i+j=n

[ia, ib]⊗ [ja, jb],

i.e. (1, [a, b], [2a, 2b], . . .) is a divided power series.

Proof. We prove, by induction on b, that for

[a, b] := (a, b)−
∑

t∈U(a,b),t6=[a,b]

t,

the de�nition of ∆ coincides with the action of ∆ indicated in the formulation of the lemma. Note
that ∆ and [a, b] are well de�ned through recursion on the right hand side, as [a, b] is the only term
in U(a, b) which has a contribution [·, b] in it.

For b = 1 we get the induction basis, as (a, 1) = [a, 1] and

∆(a, b) = (a, 1)⊗ 1 + 1⊗ (a, 1).

Now, we determine
∆(a, b)−∆(

∑
t∈U(a,b)
t6=[a,b]

t).

We know, by induction, that

∆(a, b) = (a, b)⊗ 1 + 1⊗ (a, b) +
∑
i+j=a
k+l=b
kl 6=0

∑
(t,t′)∈U(i,k)×U(j,l)

t⊗ t′ =
∑
i+j=a
k+l=b

(t,t′)∈U(i,k)×U(j,l)

t⊗ t′.

We try to identify which terms in ∑
i+j=a
k+l=b

∑
(t,t′)∈U(i,k)×U(j,l)

t⊗ t′

cancel out with terms in
−∆(

∑
t∈U(a,b)
t6=[a,b]

t).

To achieve that, we de�ne ψijkl : U(i, k)×U(j, l) −→ U(i+ j, k+ l) for all i, j, k, l. �e purpose
of this ψ is to encode the following relation: ψ(t, t′) = t′′ if and only if t ⊗ t′ is a term in ∆(t′′).
We will need the induction hypothesis to prove that the we ψ construct has the right properties.
�e functions ψijkl will already map all the terms in U(i, k)×U(j, l) which do not come from any
term of U(a, b) \ {[a, b]} to [a, b]. As this ψ will encode the asked relation on all the t′′ 6= [a, b], we
get that ψ necessarily encodes the relation as well for [a, b]. So, now we give the construction of ψ.
We put

ψ00kl(1, a) = a,

ψij00(a, 1) = a,
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ψijkl([a0, b0]r0, [a1, b1]r1) =


[a0 + a1, b0 + b1]ψi−a0,j−b0,k−a1,l−b1(r0, r1) a0/b0 = a1/b1

[a0, b0]ψi−a0,j−b0,k,l(r0, [a1, b1]r1) a0/b0 < a1/b1

[a1, b1]ψi,j,k−a1,l−b1([a0, b0]r0, r1) a0/b0 > a1/b1

.

One easily sees that this ψ encodes the asked relation for t ∈ U(a, b), t 6= [a, b] using the induction
hypothesis. �e only terms which it maps to [a, b] are exactly the terms of the form [c, d] ⊗ [e, f ]
with a/b = c/d = e/f , which is what we had to prove. �

Now, we consider unital associative algebras A, B and C , and a relation ∆ between A and B ⊗C ,
which we denote using a∆

∑
i bi ⊗ ci for a ∈ A, bi ∈ B, ci ∈ C . �ere is one requirement for

this relation, namely that a∆f ,b∆g imply both a + b∆f + g and ab∆fg. We consider families of
elements (a, b) for a, b ∈ N such that

(a, b) ∆
∑
i+j=a
k+l=b

(i, k)⊗ (j, l)

and (a, 0) = δa0.

�eorem 2.3.3. Suppose that ∆ is a relation satisfying the two aforementioned properties. Let the
(a, b) be three families (in A, B and C) of elements satisfying the mentioned relations. Each (n,m)
(in A, B and C) can be wri�en as

(n,m) =
∑

t∈U(n,m)

t,

with

U(n,m) = {[a1, b1] . . . [ak, bk]|a1/b1 < a2/b2 < . . . < ak/bk,
∑

ai = n,
∑

bj = m},

such that, for each a, b with gcd(a, b) = 1 and each n ∈ N, the following relation holds

[na, nb] ∆
∑
i+j=n

[ia, ib]⊗ [ja, jb].

Proof. Lemma (2.3.2) proves this theorem in the special case of A = B = C = Z and x ∆ y
if ∆(x) = y. Now, we consider the unique morphisms φA, φB, φC going from Z to A,B and C
determined by the fact that they map

(a, b) −→ (a, b).

Observe that ∆(z) =
∑

i bi ⊗ ci implies that

φA(z) ∆
∑
i

φB(bi)⊗ φC(ci),

because z is a polynomial in the (a, b) and
∑

i bi ⊗ ci is the unique element of Z ⊗ Z formed by
applying ∆ on certain elements (a, b) and the using the compatibility of ∆ with sum and multipli-
cation. �

De�nition 2.3.4. Given families satisfying the conditions of �eorem (2.3.3), we will, for coprime
a and b, sometimes refer to the whole sequence (1, [a, b], [2a, 2b], . . .) as exp[a, b]. Sometimes we
will use the same notation to, instead, denote the sum 1+[a, b]+[2a, 2b]+· · · . However, the second
use is only permi�ed if this is a �nite sum, or if we add a scalar which turns it into a formal power
series. Furthermore, the distinction between those use cases should be obvious from the context.
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Using the exponentials (with exp s[a, b] = 1 + s[a, b] + s2[2a, 2b], . . .), we could reformulate what
we proved as ∑

satb(a, b) =
∏

(a,b)∈S

exp(satb[a, b]),

with S the set of coprime (a, b) and order (a, b) < (c, d) if a/b < c/d. Moreover, in what follows
the elements (a, b) will o�en be de�ned from

exp(sx) exp(ty) exp(sx)−1 =
∑

satb(a, b),

for some elements contained in certain sequence groups x, y.

2.4 Sequence pairs

2.4.1 De�nition of sequence pairs

We consider sequence Φ-groups and introduce sequence pairs. We recall that we assumed that the
sequence group representations of sequence Φ-groups are even.

Motivation 2.4.1. We try to motivate the forthcoming de�nition of sequence pairs. We want to
consider pairs of sequence Φ-groups such that there is a sort of pairing between them, using the
adjoint representation. Speci�cally, let A be an associative unital Φ-algebra and G+, G− be two
sequence Φ-groups in A. Let x ∈ G±(K) and y ∈ G∓(K), we set

f(m,n) = (ad(0)
x (y0), ad(m)

x (yn), . . . , ad(mk)
x (ynk), . . .).

We want that f(m,n) = (1) ∈ G±(K) for m > 3n, f(3, 1) ∈ H1
±(K) and that f(2, 1) ∈ G±(K)

modulo some error terms contained the ideal generated by the f(3, 1)i, i > 0. We also want that
for m,n such that 3n > m > 2n that f(m,n) = (1) modulo some error terms contained in the
ideal generated by the f(3, 1)i, i > 0. However, the indication that some equalities must hold
modulo some ideal is not optimal. An exact description of the error terms is much be�er. �is exact
description is possible using the elements [a, b] introduced in �eorem (2.3.3).

Intuitively, this generalizes Faulkners [Fau00] approach to divided power representations of Jordan
pairs. Speci�cally, he asks that f(m,n) = (1) for all m > 2n and that f(2, 1) ∈ G±(K). We see
that this restriction holds for elements x, y in a sequence pair if and only f(3, 1) = (1), which will
de�nitely be true for any sequence pair representation of a Jordan pair.

Suppose that G+, G− are sequence Φ-groups with a de�ning representation in A. We de�ne, for
x ∈ G±(K), y ∈ G±(K), and a, b ∈ N, the elements

(a, b) = ad(a)
x (yb).

Note that (a, 0) = δa0. Now, we want to de�ne some other elements from these (a, b) using the
de�nition of elements [a, b] as in �eorem (2.3.3). We recall that

U(n,m) = {[a1, b1] . . . [ak, bk]|a1/b1 < a2/b2 < . . . < ak/bk,
∑

ai = n,
∑

bj = m},

for symbols [a, b] with 0 < a, b ∈ N, we also set [a, 0] = δa0. For a family of elements (a, b) in any
algebra B, we can interpret these [a, b] as elements of B, using

(a, b) =
∑

t∈U(a,b)

t,
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which gives us the recursive formula

[a, b] = (a, b)−
∑

t∈U(a,b)
t6=[a,b]

t.

Note that there is no relation ∆, yet7, upon which we can apply �eorem (2.3.3) to get nice prop-
erties for the elements [a, b]. Nonetheless, any application of that theorem on the family (a, b) will
necessarily give the elements [a, b].

De�nition 2.4.2. We assume, in the following de�nition, that K is a free Φ-alg-variable, in order
to prevent stating repeatedly that all statements must hold for all K ∈ Φ-alg. Consider a pair
G = (G−, G+) of sequence Φ-groups in A. Suppose that, for σ = ±, there exist operators

Qσ(K) : Gσ(K) −→ HomSet(G−σ(K), Gσ(K)),

Tσ(K) : Gσ(K) −→ HomSet(G−σ(K), H1
σ(K)).

We assume that these, for x ∈ Gσ(K), y ∈ G−σ(K), satisfy

[3n, n] = Tσ(K)(x)(y)2n, (2.3)
[2n, n] = Qσ(K)(x)(y)n, (2.4)

with [a, b] and U(a, b) as introduced just before the de�nition. If, in addition,

ad(n)
x (ym) = 0 for n > 3m (2.5)

and
ad(a)
x (yb) =

∑
t∈Ũ(a,b)

t, (2.6)

for all a, b such that 3b > a > 2b, with

Ũ(a, b) = {t ∈ U(a, b)|t = i[3j, j] for some j > 0, i ∈ U(a− 3j, b− j)},

hold, then we call G a sequence pair. Note that there cannot be a contribution of [3j, j] with
j > 0 in the i in Ũ(a, b). A homomorphism ρ : G −→ G′ of sequence pairs, is a pair of sequence
group morphisms ρσ : Gσ −→ G′σ such that Qσ(K)(ρσ(x))(ρ−σ(y)) = ρσ(Qσ(K)(x)(y)) and
Tσ(K)(ρσ(x))(ρ−σ(y)) = ρσ(Tσ(K)(x)(y)) for all σ = ±, x ∈ Gσ(K), y ∈ G−σ(K). A se-
quence pair representation is a pair of sequence group representations so that, �rstly, the image
forms a sequence pair P and, secondly, the representations induce a morphism onto P . Suppose ρ
is a sequence pair representation formed by faithful sequence group representations, then we call
ρ a de�ning representation.

Remark 2.4.3. • �e name de�ning representation indicates that if we forget the sequence pair
structure and only have a pair of sequence group representations corresponding to a de�ning
representation, then we can recover, i.e. de�ne, the operators Q and T . Note, however, that
we need to require that the de�ning representation was a sequence pair representation and
not just a pair of sequence group representations such that their images form a sequence pair,
as this would not necessarily yield the same Q and T .

7Eventually we will see that these elements actually do, in some sense, come from an application of �eorem (2.3.3) in
a Hopf algebra, namely the universal representation. In fact, we could have �rst de�ned what we call weak sequence
pairs (cf. De�nition (2.4.4)), then realize that there is an associated Hopf algebra in which we can apply the theorem
to the family (a, b), and then restrict ourselves to a speci�c subset of weak sequence pairs.
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• We will never writeQσ(K) again, and just writeQσ . �e same is true for T . In what follows,
we will o�en writeQx(y) instead ofQσ(x)(y) if the signs are obvious from, or do not ma�er
in the context. Moreover, we will o�en use σ to denote a sign ± without always stating that
σ = ±.

• We will o�en write, “let x ∈ Gσ(K)” and use K as a free Φ-alg variable, instead of �rst
�xing K ∈ Φ-alg. �is reduces the verbosity, as �rst �xing K while you functionally use it
as a free Φ-alg variable does not tell anything. Furthermore, if it is used to denote Gσ(K)
there is no doubt that K is an element of Φ-alg.

• �e category-theoretic notions of mono-, epi- and isomorphism coincide with the fact that the
underlying morphismsGσ(Φ) −→ G′σ(Φ), as abstract groups, is a mono-, epi- or isomor�sm.

• All the expressions involved in the de�nition are linearizable. Most expressions fall under
Remark (2.2.10). For Qσ, Tσ , we need to apply a li�le trick. �ey correspond to polynomi-
als in a de�ning representation. �erefore, they are linearizable in the de�ning representa-
tion. Note that these operators can be fully reconstructed, seen as polynomials in a de�ning
representation, from the restrictions Qσ(Φ), Tσ(Φ) and all linearizations. A consequence is
that we are perfectly justi�ed to speak about the identities of De�nition (2.4.2) and all their
linearizations. Moreover, if G is a sequence pair, and if there is a pair of sequence group
representations which satisfy De�nition (2.4.2), but only for Φ, and all linearizations of the
identities are satis�ed over Φ, then it is a sequence pair representation.

• One easily sees that T is of the form

Tσ(x)(y1, y2) = (0, fx(y1)),

with fx(y1) linear in y1. So, Tσ(x) is a group homomorphism factoring through G/H1
σ(K).

For Q, it is not that easy. We can split Q into two parts, we look at

Q1
σ : Gσ −→ HomGrp(G/H

1
−σ, G/H

1
σ),

and
Q2
σ : Gσ −→ HomGrp(H

1
−σ, H

1
σ),

de�ned by
Q1
σ(x)(y1, ·) = zH1

σ(K),

with the unique zH1
σ(K) such that z1 = [2, 1] in a de�ning representation, and Q2

σ de�ned
by just taking the restriction of Qσ(x) to H1(K). �e fact that the image of Q2

σ also lies in a
H1
σ(K) is a consequence of the fact that all representations are assumed to be even, so that

ad(2n)
x (yn) =

{
0 if n odd
[2n, n] always

, so (1, 0, [4, 2], 0, [8, 4], . . .) ∈ H1
σ(K),

for x ∈ Gσ(K) and y ∈ H1
−σ(K). Note that Q1

σ , Q2
σ fully8 determine Qσ and vice versa. We

will sometimes use these speci�c operators instead of the full Qσ if we want to do explicit
computations.

8Only if we know thatG forms with these operators a sequence pair. Otherwise, we do not know whetherQmaps into
G.
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• �e binomial divided power representations of Jordan pairs of [Fau00] correspond exactly
with the sequence pairs such that H1 = [G,G] = 0. Speci�cally, if G is such a sequence
pair, then G = (V +, V −) as groups and the operators Q makes G into a Jordan pair. We
prove this in Proposition (4.1.15). Conversely, the restriction that ad(2n)

x (yn) = Qx(y)n and
ad(n)
x ym = 0 for n > 2m for binomial divided power representations implies all the identi-

ties of De�nition (2.4.2). So, the binomial divided power representations of Jordan pairs are
sequence pair representations.

• We will be working a lot with the elements (a, b) and [a, b] as introduced before the de�nition.
�ese elements are only de�ned once you �x x ∈ Gσ(K) and y ∈ G−σ(K). So, if we use
these elements we will always indicate which x and y we use. However, we will not repeat
endlessly that (a, b) = ad(a)

x (yb) and that the [a, b] are de�ned using recursion from that. So,
we will use the notation (a, b) and [a, b] a lot, and consider them, sort of, as operators which
are an integral part of each sequence pair representation.

De�nition 2.4.4. Suppose that G is a pair of sequence Φ-groups which satisfy restrictions (2.3),
(2.5), and have operators Q1, Q2 such that

Q1
x(y)1 = [2, 1], Q2

x(h)2n = [4n, 2n] = ad(4n)
x (h2n),

for all x ∈ G±(K), y ∈ G∓(K), h ∈ H1
∓(K) and n ∈ N. If, additionally, restriction (2.6) holds for

x ∈ G±(K) and y ∈ H1
±(K), then we call G a weak sequence pair. �e adaptation of restriction

(2.6) is so that it expresses that ad(n)
x (hm) = 0 for n > 2m and h ∈ H1

±(K), x ∈ G∓(K). It
asks nothing more and nothing less. �e weak sequence pair representations are exactly the
representations of the sequence Φ-groups which satisfy these restrictions.

Remark 2.4.5. • We can reformulate what weak sequence pairs are, only utilizing elements of
the form (·, ·). Speci�cally, we ask, for x ∈ Gσ(K), y ∈ G−σ(K), h ∈ H1

−σ(K), n ∈ N, that

Tx(y)n = (3n, n),

Q1
x(y)1 = (2, 1),

Q2
x(h)n = (4n, 2n).

We also ask that all (a, b) = 0 with a > 3b for x and y, and that all (a, b) = 0 with a > 2b
for x and h.

• We will not use weak sequence pairs that much. Nevertheless, they are conceptually useful
if we were not yet able to prove the existence of a Q with nice properties. Speci�cally, if
1/2 /∈ Φ this replacement will save us some trouble. Later, we will be able to prove that,
if 1/6 ∈ Φ, each weak Kantor-like (De�nition (4.2.1)) sequence pair is a sequence pair. �e
same is true for Jordan-Kantor-like sequence pairs. �e question if each weak sequence pair
representation is a sequence pair representation is of a more subtle kind.

• Applied to Jordan pairs, the weak sequence pairs with H1
± = 0 would be Jordan pairs if

1/2 ∈ Φ. If 1/2 /∈ Φ, then these notions do not coincide. Speci�cally,

QxQyQx = QQxy

does not necessarily hold.

Lemma 2.4.6. Suppose G is a pair of sequence groups in A. Conditions (2.5) and (2.6) are equivalent
to [a, b] = 0 if a/b 6= 3 and a > 2b.
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2 Sequence groups and pairs

Proof. Suppose conditions (2.5) and (2.6) hold. We prove that [a, b] = 0 for all a > 3b. Note that
U(a, b) consists entirely out of elements

[a1, b1] . . . [an, bn],

with ai/bi strictly increasing, such that
∑
ai = a and

∑
bi = b. As a consequence, we can infer

from a > 3b that an > 3bn. So, we can apply induction, since the theorem holds for b = 0,
with induction step [a, b] = 0 −

∑
t∈U(a,b),t6=[a,b] 0. Analogously, we prove that [a, b] = 0 for all

3b > a > 2b. Speci�cally, Ũ(a, b) contains by induction the subset of U(a, b) \ {[a, b]} of elements
which are non zero in A. From (2.6), we conclude that

[a, b] = ad(a)
x (yb)−

∑
t∈Ũ(a,b)

t = 0.

�e converse holds since
ad(a)
x (yb) =

∑
t∈U(a,b)

[a, b]

holds by de�nition. To be precise, if a > 3b, then each

[a1, b1] . . . [an, bn] ∈ U(a, b)

is zero since an > 3bn. If, a > 2b then the same still applies, but each term t = [a1, b1] · · · [an, bn] ∈
U(a, b) can only contribute if an > 2bn and bn > 0, so that we get that the terms t ∈ U(a, b) which
are non-zero are necessarily contained in Ũ(a, b), as they should end on a [3j, j] with j 6= 0. �

Remark 2.4.7. We will o�en use Lemma (2.4.6) to prove that conditions (2.5) and (2.6) hold. In the
current formulation, it might even be more natural to use the equivalent description of the lemma.
However, the only conceptual di�erence is in condition (2.6). �is formulation of the condition
has the advantage that it nicely indicates that (a, b) = 0 for a > 2b if we divide out by the ideal
generated by the [3i, i] for i > 0.

2.4.2 From Jordan-Kantorpairs to sequence pairs

We shall prove, in this subsection, that the representations of Example (2.1.8) are actually a sequence
pair representation if 1/5 ∈ Φ. In the 1/5 /∈ Φ case we give a su�cient condition (we later prove
this condition is necessary) for these representations to form a sequence pair representation.

�eorem 2.4.8. Let P be a Jordan-Kantor pair. �e representations of Example (2.1.8) in the endo-
morphism algebra of L = TKK(P, InStr(P ) + Φζ) with ζ a grading element, form a sequence pair
representation, which we call the TKK representation of the sequence pair associated to the Jordan-
Kantor pair, if either

• 1/5 ∈ Φ,

• xn[a, b] =
∑

i+j=n[xia, xjb] for all a, b ∈ L and n ∈ N, x ∈ Gσ(Φ).

Remark 2.4.9. • One can reformulate the second condition of the either-statement to be that,
with (n,m) = ad(n)

x (ym), (5, 1) = 0 for all x ∈ Gσ(Φ), y ∈ G−σ(Φ) and (5, 2), (6, 2) = 0
if y ∈ H1

−σ(Φ). �ese conditions are very reminiscent of the axiom QxDy,x = Dx,yQx for
Jordan pairs (as this axiom is equivalent with (3, 1) = 0).
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• It is interesting to note that all central simple structurable algebras over �elds with charac-
teristic 5 will, by the previous theorem, induce sequence pair representations. Speci�cally,
Stavrova [Sta20, �eorem 1.1 and �eorem 2.1] showed that xn[a, b] =

∑
i+j=n[xia, xjb] for

all n ∈ N, a, b ∈ L.

• �e condition xn[a, b] =
∑

i+j=n[xia, xjb] is also necessary. For Kantor pairs, we note this
in Remark (4.2.9). For Jordan-Kantor pairs this property is necessary for the same reasons.

• It is worth noting that the linear and quadratic Jordan algebras are the same if 1/2 ∈ Φ, but
that the linear Jordan pairs (= Kantor pairs so that the standard embedding in a Lie algebra
is a 3-graded Lie algebra) are not equivalent to quadratic Jordan pairs if 1/3 /∈ Φ. So, we are
probably not considering all Kantor pairs if 1/5 /∈ Φ.

We will already refer in the following lemmas to this pair of representations, as the TKK represen-
tation. At this moment we only know that it is a pair of sequence group representations.

Lemma 2.4.10. �e TKK representation is a pair of sequence Φ-group representations.

Proof. It is straightforward to see that there are sequence group representations

Gσ(K) −→ EndK(L⊗K).

However, this does not necessarily imply that there is a sequence Φ-group representation

Gσ(K) −→ EndΦ(L)⊗K.

We note that it is su�cient to argue that equations (2.1) and (2.2) hold, to prove that we have a
sequence Φ-group representation. We could use direct computation to prove that. Nevertheless,
we will argue di�erently. We want to conclude that λn · gn = (λ · g)n, and (gh)n =

∑
i+j=n gihj ,

are satis�ed strictly. We will argue that this is the case using linearizations. However, we should be
careful and only linearize in well-de�ned sequence group representations. Note that all lineariza-
tions of a polynomial identity hold, if and only if the polynomial identity holds over all Φ[t]/(tn),
as a polynomial of homogeneous degree n can be linearized over Φ[t]/(tn+1). We have sequence
group representations

Gσ(Φ[t]/tn) −→ EndΦ[t]/(tn)(L⊗ Φ[t]/(tn)) ∼= EndΦ(L)⊗ Φ[t]/(tn),

with the isomorphism because Φ[t]/(tn) is a �nite free Φ-module. So, all linearizations of the
polynomial identities necessarily hold. In particular, equations (2.1) and (2.2) hold. So, we have a
sequence Φ-group representation. �

Lemma 2.4.11. Consider a 5-graded Lie algebra L with grading element over Φ. Suppose that D is
a derivation on L such that there exists a j 6= 0 so that DLi ⊆ Li+j for the grading components Li of
L. If 1/6 ∈ Φ, then D is an inner derivation.

Proof. Suppose that ζ is the grading element and x ∈ Li. We compute

iDx = D[ζ, x] = [Dζ, x] + [ζ,Dx] = [Dζ, x] + (i+ j)Dx.

Since j 6= 0 and 1/j ∈ Φ, we get
Dx =

−1

j
[Dζ, x].

Hence, D is an inner derivation. �
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De�nition 2.4.12. A Lie-exponential is an endomorphism 1 + E1 + E2 + . . . + En of a Lie
algebra L such that E1 is a derivation, E2[a, b] = [E2a, b] + [E1a,E1b] + [a,E2b], for all a, b ∈ L,
etc. We note that these are not necessarily automorphisms. Furthermore, in�nite sums 1+E1 + . . .
which are well de�ned and which are Lie exponentials for each Sn = 1 + E1 + . . .+ En, are also
called Lie exponentials.

Lemma 2.4.13. Suppose 1/6 ∈ Φ. Each Lie-exponential E = 1 + E1 + E2 + E3 + E4 on a Lie
5-graded Lie algebra L with grading element, such that there exists j = ±1 so that Ei(Lk) ⊂ Lij+k
is of the form

exp(x1 + x2) = 1 +
4∑
i=1

∑
j+2k=i

(ad x1)j

j!

(ad x2)k

k!
,

for some (x1, x2) ∈ Lσ × L2σ , σ = ±.

Proof. Lemma (2.4.11) shows that all derivations with a certain action on the grading are inner are
inner. Hence, forE we know thatE1 is an inner derivation. �erefore, we getE1 = ad x1 for some
x1 ∈ Lσ .

Now we use the fact that 2E2 − E2
1 , 3E3 − 3E1E2 − E3

1 and a similar expression for E4, namely
P4 = 4E4−2E2

2 +E1E3−2E3E1 +E2E
2
1 , are derivations9. For 2E2−E2

1 and 3E3−3E1E2−E3
1

this is an easy computation. For P4, this is still straightforward, but slightly more involved.

As a consequence, we see that 2ad x2 = 2E2 − E2
1 and that 0 = 3E3 − 3E1E2 − E3

1 . So, E3 and
E4 are uniquely determined from E1, E2 and these equations. One easily sees that exp(x1 + x2)
satis�es exactly the same properties. �

Lemma 2.4.14. For the TKK representation ρ of G in End(L) the equation

xn · [a, b] =
∑
i+j=n

[xi · a, xj · b]

holds, for each x ∈ G±(Φ), a, b ∈ L and for n ≤ 4. Moreover, if 1/5 ∈ Φ this holds all n with xk = 0
for k > 4.

Proof. Suppose x = (c, d) ∈ Lσ ⊕ L2σ , then

ρ(x) = (1, ad c, (ad c)2/2, (ad c)3/6, (ad c)4/24)× (1, 0, ad d, 0, (ad d)2/2).

For C = (1, ad c, (ad c)2/2, (ad c)3/6, (ad c)4/24) and D = (1, 0, ad d, 0, (ad d)2/2), one easily
shows, using induction, that the lemma holds (using, for the moreover part, that (ad c)5/(5!) =
0 = (ad c)6/(6!) and the fact that [Dia,Djb] = 0 for all a, b ∈ L ifDk is k graded and if i+ j ≥ 7).
Now, notice that∑

i+j=k

CiDj [a, b] =
∑

i+l+m=k

Ci[Dla,Dmb] =
∑

o+p+l+m

[CoDla,CpDmb]

holds for all k. �is proves that x satis�es the lemma. �

9�ese are important expressions. �ese are primitive for any divided power series, which is in some sense equivalent
to saying that these are derivations in this context. Moreover, it is actually possible, cf. Lemma (4.2.10), to show that
the expressions with E3 and E4 are 0 for each sequence Φ-group representation.
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Remark 2.4.15. Note that the result of the previous lemma de�nitely holds for all x ∈ H1(K), even
without the assumption 1/5 ∈ Φ. We can easily extend the lemma to prove that

xn · [a, b] =
∑
i+j=n

[xi · a, xj · b]

holds for each x ∈ G±(K), if it holds for all y ∈ G±(Φ), by using that each such x can be wri�en
as a product of K-scalar multiples of such y.

Lemma 2.4.16. Suppose that

xn · [a, b] =
∑
i+j=n

[xi · a, xj · b]

holds, for each x ∈ G±(Φ), a, b ∈ L and for all n. For coprime n and m, the element 1 + [n,m] +
[2n, 2m] + [3n, 3m] + [4n, 4m] is a Lie-exponential.

Proof. We want to use �eorem (2.3.3) on the relation

a ∆
∑

bi ⊗ ci ⇐⇒ a[u, v] =
∑

[biu, civ] for all u, v ∈ L,

for a, bi, ci in the endomorphism algebra of a Lie algebra L. �is relation is compatible with sums
and multiplications. So, need to determine whether the elements (u, v) = ad(u)

x (yv) satisfy

(u, v) ∆
∑
i+j=u
k+l=v

(i, k)⊗ (v, l),

as [n,m], [2n, 2m], etc. can be seen to be de�ned from these elements if we apply �eorem (2.3.3).

We compute

(i, j) =
∑
a+b=i

xayj(x
−1)b ∆

∑
a1+a2=a
b1+b2=b
a+b=i
j1+j2=j

xa1yj1(x−1)b1⊗xa2yj2(x−1)b2 =
∑

i1+i2=i
j1+j2=j

(i1, j1)⊗(i2, j2),

making use of the assumption that xn∆
∑
xi⊗xj in the TKK representation. So, we conclude that

the element 1 + [n,m] + . . . is a Lie exponential. �

Proof of �eorem (2.4.8). Lemma (2.4.14) ensures that the second either case always holds. So, we
can use lemmas that have the second either case as an assumption. Furthermore, we know, by
remark (2.4.15), that this assumption holds for all K ∈ Φ-alg instead of only Φ. �is means that
we can forget that we are working over allK ∈ Φ-alg and just consider a particular representation
G(K) −→ EndΦ(L) ⊗ K . Despite the fact that EndΦ(L) ⊗ K is not necessarily isomorphic to
EndK(L⊗K), we know that there is an induced action of EndΦ(L)⊗K on L⊗K . First, we prove
that the representation in EndK(L⊗K) has the operators. Lemmas (2.4.16) and (2.4.13) show that
the sequences

(1, [2, 1], [4, 2], . . .) and (1, [3, 1], [6, 2], . . .),

are exponentials contained in G+(K) and G−(K). �is endows the pair of sequence groups with
some operators Q,T which satisfy identities (2.3) and (2.4) strictly.

We note that all [n,m], for 3 6= n/m > 2, are 0 by the grading, except [4, 1], [5, 1], [5, 2], [7, 3]
which are, by Lemma (2.4.16), derivations. So, they are 0 by Lemma (2.4.11), since there cannot be
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any inner derivations which act on the grading by ±3,±4. From Lemma (2.4.6), we conclude that
conditions (2.5) and (2.6) hold.

Now we realize that we have representations Gσ(K) −→ EndK(L ⊗K) which satisfy all condi-
tions. Analogous to how we argued in Lemma (2.4.10)10, we can show that this implies that Gσ(Φ)
satis�es all conditions. Speci�cally, the fact that we have representations in all EndK(L⊗K) means
that all linearizations of all the restrictions will hold. So, we have sequence pair representations in
EndΦ(L)⊗K . �

2.4.3 From Hopf algebras to sequence pairs

We de�ne
Ax(y) = m ◦ (Id⊗ S) ◦∆(x)(y),

with m(a⊗ b)(c) = acb. Note that this corresponds roughly to ad(·)
x for sequence groups. Namely,

suppose that x 7→ (1, x1, . . .) is a sequence group representation which maps elements to divided
power series, in that case we get Axi = ad(i)

x . Later, we will be able to interpret ad(·)
x to actually

correspond, in a strict sense, to A.

Lemma 2.4.17. Let H be a Hopf algebra, then ∆ ◦S = τ ◦S ⊗S ◦∆ holds, with τ(a⊗ b) = b⊗ a.

Proof. A proof of this has been given by Abe and Sweedler [AS77, �eorem 2.1.4]. �

Lemma 2.4.18. Let H be a Hopf algebra and suppose that x and y are divided power series. Set

(n,m) := Axn(ym),

then ∆(n,m) =
∑

i+j=n
k+l=m

(i, k)⊗ (j, l).

Proof. We compute

∆(n,m) = ∆(
∑
i+j=n

xiymS(xi))

=
∑
a+b=i
c+d=m

(xayc ⊗ xbyd)∆(S(xi)).

By lemma (2.4.17), the statement follows. �

Corollary 2.4.19. Let x and y be divided power series in a Hopf algebraA. Suppose that ε(xn) = 0 for
n > 0. �ere exist unique divided power series 1, [n,m], [2n, 2m], . . ., for all n,m coprime, satisfying

(n,m) =
∑

t∈U(n,m)

t,

with U(n,m) the set of �eorem (2.3.3) and (n,m) = Axn(ym).

Proof. �is is �eorem (2.3.3) applied to the relation a∆f if and only if ∆(a) = f , on the family of
elements (n,m) (3 times the same family). �is family has the right properties by Lemma (2.4.18)
and the assumption ε(xn) = 0. Speci�cally, this assumption shows that (n, 0) = δn0, as Axn(1) =
η(ε(xn)) = δn0. �
10We need to be less careful, as we already know that we have sequence Φ-group representations, so that it is de�nitely

meaningful to speak about linearizations.
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Remark 2.4.20. Consider inH[[t]] the formal power series e = exp(t ·x) =
∑
tixi, for a dps x such

that ε(xi) = δi0. �is is a group like element, as ∆(e) = e⊗e and ε(e) = 1 show. �erefore e has an
inverse e−1 which does, necessarily, coincide with S(e) since 1 = ε(e) = (Id⊗S) ◦∆(e) = eS(e).

�us, we can compute aexp(t·x) = exp(t · x)−1a exp(t · x) for each such dps x and a ∈ H . Note
that the coe�cient of ti equals AS(xi)(a).

De�nition 2.4.21. Suppose H is a Z-graded Hopf algebra where the primitive elements P are
5-graded, i.e. P−2⊕P−1⊕P0⊕P1⊕P2, compatible with the Z-grading on the Hopf algebra. �en
we call H 2-primitive Z-graded. Suppose that x is a dps in H such that xi ∈ Hi for each i, then
we call x a positive homogeneous dps. If xi ∈ H−i for all i, we call it a negative homogeneous
dps. Note that the exponentials of these divided power series are group like and, thus, invertible,
as Remark (2.4.20) indicates.

Lemma 2.4.22. Consider a cocommutative Z-graded Hopf algebra H over Φ. �e positive (resp. neg-
ative) homogeneous divided power series of H form a sequence group. Moreover, if two homogeneous
divided power series

(1, x1, . . . , xn, xn+1, . . .), (1, x1, . . . , xn, x
′
n+1, . . .)

coincide on the �rst n elements and if xn+1 6= x′n+1, then xn − x′n+1 is primitive.

Proof. Firstly, we note that divided power series are compatible with the scalar multiplication. Sec-
ondly, any easy computation shows that the group operation is internal. We only need to see that
there are inverses. Recall that ε = 0 on the non 0-graded parts. We use this to prove that there is
an inverse, by computing

δn0 = η ◦ ε(xn) = (Id⊗ S) ◦∆(xn) =
∑
i+j=n

xiS(xj),

which means that x · S(x) = (1). �e second statement is trivial. �

�eorem 2.4.23. SupposeH is a cocommutative 2-primitive Z-graded Hopf algebra over Φ. Suppose
that for all ±2 graded primitive elements x there exist an in�nite homogeneous dps over x and that,
either

• 1/2 ∈ Φ and for each primitive element which is ±1 graded, there exists an in�nite positive, or
negative, homogeneous dps (1, x, . . .),

• there exists a quadratic form f such that for all primitive elements x which are±1 graded there
exists an in�nite positive homogeneous dps (1, x, f(x), . . .),

then the sequence groups of positive and negative homogeneous divided power series form a sequence
pair.

Proof. First, we investigate whether the restriction on the primitives is compatible with scalar ex-
tensions. Speci�cally, we need to check whether H ⊗ K for K ∈ Φ-alg satis�es the conditions
of the theorem as well. �is is the case since the primitive elements are the kernel U of the map
x 7→ ∆(x)− x⊗ 1− 1⊗ x, and the kernel of this map in H ⊗K must, therefore, be U ⊗K .

We show that if 1/2 ∈ Φ and if there exists a dps over each ±1-graded primitive element, then
there exists a quadratic form f so that the second option of the either-statement is satis�ed. Specif-
ically, we know that u = x(−x) = (1, 0, 2x2 − x2

1, . . .) ∈ H1
± for all x ∈ G±. We get that

x(−1/2 ·H u) = (1, x1, x
2
1/2, . . .) ∈ G±. Clearly, x 7→ x2/2 is a quadratic form. Note that

(x, s) 7→ (1, x, f(x), . . .) × (1, 0, s, . . .), going from the positively or negatively graded primitive
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elements, parametrizes all positive (or negative) homogeneous dps’es, since any other positive dps
cannot di�er in the �rst coordinate, nor can they di�er in the second. �erefore, they must, by
Lemma (2.4.22), form a sequence Φ-group. To see that this construction is fully compatible with
scalar extensions, realize that the groups G±(K) are generated, if one allows K-scalar multiplica-
tion, by the G±(Φ).

It only remains to check whether the restrictions of De�nition (2.4.2) are satis�ed. Take x ∈ Gσ(K)
and y ∈ G−σ(K). We apply Corollary (2.4.19) to see that all the elements [a, b] such that [a, b] 6=
[n, n] for all n, are part of positive or negative homogeneous dps’es. As such, we see that the
operators Q,T are de�ned. We also know that all [a, b] with 3 6= a/b > 2 are zero, since the �rst
non-zero [qa, qb], for 0 < q ∈ Q is necessarily primitive. But [3, 1] is the only 2-graded [a, b] with
a > 2b. From Lemma (2.4.6), we conclude that conditions (2.5) and (2.6) hold. �
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3 Interlude: Special sequence pairs

In this chapter, we present some examples of sequence pairs. Speci�cally, we construct some se-
quence pairs over rings Φ, with 1/6 not necessarily in Φ. We will also look at the easiest class of
structurable algebras, namely the associative algebras with involution. We do this by studying a
generalization of the broader class of 3-special Kantor pairs, as introduced by Allison and Faulkner
[AF99, Section 6], and their generalizations to sequence pairs.

Let A be a unital associative algebra over Φ with three orthogonal idempotents e−1, e0, e1 which
sum to 1. �ere is a 5-grading on A depending on those idempotents. Namely, consider the Z-
grading de�ned by Ai =

∑
j−k=i ejAek. We can look at the sequence group with elements in

(1, A1, A2) and the one with elements in (1, A−1, A−2). We denote the former, in this chapter, as
G+ and the la�er as G−. Note that the grading readily gives (G+, G−) the structure of a sequence
pair.

De�nition 3.1.1. A sequence pair P is special if there exists (A,E, θ), where A is a unital as-
sociative algebra, E a set of three orthogonal idempotents in A and θ a de�ning sequence pair
representation such that θ+(P+) ≤ G+ and θ−(P−) ≤ G−. If this is only a de�ning representation
of a weak sequence pair P , then we call P weakly special

Remark 3.1.2. Note that this is a generalization of special Jordan pairs. Our generalization is a slight
adaptation of a generalization, namely 3-special Kantor pairs, of the special Jordan pairs.

Proposition 3.1.3. If 1/2 ∈ Φ and P is a pair of sequence groups over Φ, then P is weakly special
if and only if it is special.

Proof. Note that special implies weakly special. So, we prove the converse. Speci�cally, we need to
prove that Qx(y) = (1, [2, 1], [4, 2]) ∈ G+(K) for x ∈ G+(K), y ∈ G−(K). An easy computation
shows that [4, 2] = (4, 2) − [1, 1][3, 1]. We assume that the representations are in standard form,
i.e. (x, 0) 7→ (1, x1, x

2
1/2). Suppose that y = (y1, s). We get

ad(4)
x (y2) = ad(4)

x (y2
1/2 + s) = Q2

x(s)2 +
∑

i+j=4,ij 6=0

[i, 1][j, 1]/2,

by the moreover part of Lemma (2.1.9). So, we see that

[4, 2] = Q2
x(s)2 +

1

2
Q1
x(y1)2

1 −
1

2
[[1, 1], Tx(y)2].

�is means that Qx(y) ∈ G+(K) if −1
2 [[1, 1], Tx(y)2] ∈ H1

+(K). We know that [1, 1] = [x1, y1].
So, we can express [Tx(y), [1, 1]] using the (2, 1) linearization of T , it is namely

T 2,1
Tx(y),x(y)2 = ad(2)

Tx(y)2
ad(1)
x (y1) = (ad Tx(y)2)(ad x)(y1) = [Tx(y)2, [1, 1]].

We note that all linearizations of T map to H1(K). So, P is special. �

49



3 Interlude: Special sequence pairs

Remark 3.1.4. Suppose that x, y, y1, s are as in the previous proposition. If we write Qx(y1, s) =
(Q1

xy1, Q
′
xy+Q2

xs), then we see, if 1/2 ∈ Φ and if both sequence groups are in standard form, that

Q′xy = −−1

2
[[1, 1], Tx(y)],

so the question is whether such a Q′ exists for a general representation.

Remark 3.1.5. If 1/2 /∈ Φ it is not at all obvious how one could show that (1, [2, 1], [4, 2]) is an
element of the group as it will depend on the quadratic form x1 7→ f(x1) corresponding to the
representation by (x, 0) 7→ (1, x1, f(x1)) of Gσ(K). �e exact condition is

(4, 2)− [1, 1][3, 1]− f([2, 1]) = [4, 2]− f([2, 1]) ∈ H1
2 (K).

�ere is a nice correspondence between associative unital algebras with three idempotents, and
such algebras which do have a 3× 3-matrix form, although there may be entries of these matrices
which lie in di�erent modules. So, suppose that we have a unital associative algebra A with three
idempotents e−1, e0, e1, then we can write each element x of A uniquely as a matrix e1xe1 e1xe0 e1xe−1

e0xe1 e0xe0 e0xe−1

e−1xe1 e−1xe0 e−1xe−1

 ,

and the multiplication of these matrices, which can be seen to be a subset of the 3 × 3 matrices
over A, corresponds to the multiplication in A. If, on the other hand, we have an algebra of 3 × 3
matrices, then we can just take the three diagonal idempotents, i.e. the matrices which are zero
everywhere except for a 1 on a single diagonal position.

Example 3.1.6 (Hermitian special sequence pairs, if 1/2 ∈ Φ). An important example of a class 3-
special Kantor pairs, due to Allison and Faulkner [AF99, Section 8], and, thus, of a class of special
sequence pairs, are the Kantor pairs from hermitian forms. Suppose D is an associative unital
algebra with involution x 7−→ x̄ and letX be a le�D-module with a hermitian form h : X ×X −→
D, i.e. h(d · x, y) = dh(x, y) and h(x, y) = h(y, x), for d ∈ D and x, y ∈ X . First, we construct
the associative algebra in which it is special, and then we will construct the full sequence groups.
Consider the matrices of the form D X D

X̄ E X̄
D X D

 ,

where E denotes

{(φ, ψ) ∈ EndD(X )⊕ EndD(X )op|h(φ(x), y) = h(x, ψ(y)) for all x, y ∈ X},

and where X̄ is just another copy of X . However, X̄ will enjoy di�erent actions of D and E . We
still need to de�ne the multiplications, X̄ is a right D-module under x̄ · d = d̄x, a right E-module
under x · (φ, ψ) = ψ(x) and a le� E-module under (φ, ψ)x̄ = φ(x). We still need to de�ne le� and
right multiplications between elements of X and X̄ . To accomplish that, we put xȳ = h(x, y) and
x̄y = (Ay,x, Ax,y) ∈ E , where Ax,yz equals h(z, x)y. �is algebra is associative.

Now, we suppose that 1/2 ∈ Φ. We consider the group with elements1 x −h(x, x)/2 + s
1 −x̄

1

 ,
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3 Interlude: Special sequence pairs

where x ∈ X and s is a skew element of D, i.e. it is an element such that s̄ = −s. If we denote this
matrix with (x, s), one sees that (a, b)(c, d) = (a + c, b + d + h(a,c)−h(c,a)

2 ). �is is easily seen to
be a sequence group, by taking the sequence of grading components. We also consider the group
of elements of the form  1

−ȳ 1
−h(y, y)/2 + t y 1

 ,

where y ∈ X and t a skew element. �e only thing le� to prove to show that this is a sequence
pair, is to prove that the maps Q1, T,Q2 map to the right space. So, we compute

ad(2)
(x,s)

−ȳ
y

 =

 (−h(x, x)/2 + s)y + h(x, y)x

(−h(x, x)/2 + s)y + h(x, y)x


ad(3)

(x,s)

−ȳ
y

 =

 −h(x, x)h(y, x)/2 + sh(y, x) + h(x, y)h(x, x)/2 + h(x, y)s


ad(4)
(x,s)


t

 =

 (−h(x, x)/2 + s)t(−h(x, x)− s)


�ese all lie in the right space. Hence, we have got a sequence pair. Notice that if you linearize Q1,
then you get the usual V . Speci�cally, one gets (Q1(z · x)−Q1

z −Q1
x)(y) = h(x, y)z+ h(z, y)x−

h(z, x)y = Vx,yz.

Remark 3.1.7. We note that if we linearize Q1 in later sections, then we get (Q1(z · x)−Q1(z)−
Q1(x))(y) = −Vx,yz. �e reason for that, is that Allison and Faulkner [All79] use −[xyz] = Vx,yz
for the associated Lie triple system of a Kantor pair, while we used [xyz] = Vx,yz. In terms of
the associated Lie triple system, one should always get that the linearization of Q1 is [z, [x, y]] =
−[xyz].

We can generalize the previous example, so that there is no need for 1/2. Namely, we chose
a quadratic form −h(x, x)/2 which makes use of 1/2. We could, all the same, work with any
quadratic form f which polarizes to

−h(x, y) + ψ(x, y)σ,

for any bilinear form ψ : X ×X −→ S with S ≤ D the image of x 7→ x− x̄ (the skew elements, at
least if 1/2 ∈ Φ) such that ψ(x, y)−ψ(y, x) = h(x, y)−h(y, x) (note that this is no restriction, as
−h(x, y) + ψ(x, y)σ should be symmetric). However, there is still one requirement on f , namely
that f(x) + f̄(x) = −h(x, x). �is is a necessary and su�cient condition forQ1

x(y)1 ∈ (Gσ(K))1.
If 1/2 ∈ Φ, then this additional condition is de�nitely satis�ed, as its polarization is satis�ed. When
we have such a quadratic form, then we can look at

θ+(a, b) =

1 x f(x) + s
1 −x̄

1

 ,

and the similar representation θ− for the groups, with operation

(a, b)(c, d) = (a+ c, b+ d− ψ(a, c)).
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3 Interlude: Special sequence pairs

However, the existence of such a quadratic form f is not obvious at all. Notice that we only know
that these are weakly special sequence pairs.

Note that associative algebras with involution are hermitian special sequence pairs, if we equip
them with the hermitian form (x, y) 7→ xȳ. So, we give a speci�c example of a class of associative
algebras without 1/2, such that there exists such a quadratic form f . Since our class will not only
envelop �elds with characteristic 2 but also Z-algebras, there are even fewer possible quadratic
forms. �us, the number of possibilities is quite small.

Example 3.1.8. Consider A = R[x]/(x2 − x− α), for any commutative unital ring R with α ∈ R.
We endow A with an involution a+ bx 7→ a+ b− bx, which means that x̄ = 1− x and xx̄ = −α.
Note that every separable �eld extension of degree 2 with Galois involution is such an algebra.

First, we compute S:

a+ bx− a+ bx = bx− b(1− x) = (2x− 1)b,

so S = R(2x− 1). We also compute

h(a+ bx, c+ dx) = (a+ bx)(c+ dx) = ac+ ad− adx+ bcx− bdα.

We set
ψ(a+ bx, c+ dx) = (1− 2x)(ac+ ad− αbd),

which means that

h(a+ bx, c+ dx)− ψ(a+ bx, c+ dx) = 2xac+ xad+ xbc− 2xαbd.

So, we set f(a+ bx) = xa2 + xab− xαb2 = x(a+ bx)(a+ bx) = xN(a+ bx), with N the norm
associated with A and the involution. It is obvious that f(a+ bx) + f(a+ bx) = N(a+ bx).

�is means that A× S gives rise to a weakly special pair of sequence groups, whereby we need to
look at −f instead of f .

Proposition 3.1.9. For each A = R[x]/(x2 − x− α) where R is a commutative unital ring, α ∈ R
and involtution onA de�ned by x 7−→ 1−x, there exists a special sequence pair (A⊕S,A⊕S) with
de�ning representation in  A A A

Aop E Aop

A A A

 .

Proof. We already know that

(a, s) −→

1 a −N(a)x+ s
1 −ā

1

 ,

and

(a, s) −→

 1
−ā 1

−N(a)x+ s a 1

 ,

form a weakly special sequence pair. We want to show that [4, 2] + N([2, 1])x ∈ R(1 − 2x). By
Proposition (3.1.3), we know that the proposition holds if 1/2 ∈ R. Suppose now that R has no
2-torsion. We note that k(1− 2x) ∈ R(1− 2x)⊗R[1/2], and k(1− 2x) ∈ A = R[x]/(x2−x−α)
imply that k(1− 2x) ∈ R(1− 2x), as k(1− 2x) ∈ A implies that k · 1 ∈ R ⊂ A. Now, we see that
the proposition holds for general R, as each commutative ring is a quotient of a commutative ring
without 2-torsion. �
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3 Interlude: Special sequence pairs

Remark 3.1.10. We consider a family F of unital associative Z-algebras with involution. We set
SA = {x − x̄|x ∈ A} for each A in F , and suppose that we have quadratic forms f such that
f(x, y) − xȳ ∈ SA for all x, y ∈ A. Suppose that A ∈ F implies that A ⊗ K ∈ F for all unital
commutative associative Z-algebras K and that this operation is compatible with the quadratic
form f and the involution. If each A ∈ F is of the form A′⊗K for some A′ without 2-torsion and
if SA⊗K ∩A⊗1 = SA⊗1 for allA, then we can generalize the previous proposition to this family.
We call such F a well behaved associative family.

Now, we look at algebras which behave like quaternion algebras.

Example 3.1.11. Consider

B =

{(
x βȳ
y x̄

)
: x, y ∈ A

}
,

with A = R[x]/(x2 − x− α) as before, and β ∈ R. We de�ne an involution(
x βȳ
y x̄

)
7−→

(
x̄ −βȳ
−y x

)
.

We determine what S should be, by computing(
x βȳ
y x̄

)
−
(
x̄ −βȳ
−y x

)
=

(
x− x̄ 2βȳ

2y x̄− x

)
.

So, we see that
S =

{(
s 2βȳ

2y −s

)
: s ∈ R(1− 2x), y ∈ R

}
.

We also compute

h((x, y), (a, b)) =

(
x βȳ
y x̄

)(
ā −βb̄
−b a

)
=

(
āx− βbȳ −βxb̄+ βaȳ
āy − bx̄ −βyb̄+ ax̄

)
.

Hence, we get

h((x, y), (a, b))− h((a, b), (x, y)) =

(
xā− ax̄+ β(yb̄− bȳ) 2β(−xb̄+ aȳ)

2(yā− bx̄) −xā+ ax̄− β(yb̄− bȳ)

)
.

So, we can think of it as

(x, y)(a, b)− (a, b)(x, y) = (xā− ax̄+ β(yb̄− bȳ), 2(yā− bx̄)).

So, if we use the same ψ as in the previous example, to de�ne

ψ′((x, y), (a, b)) = (ψ(x, a)− βψ(b, y),−2bx̄),

then we get

h((x, y), (a, b))− ψ′((x, y), (a, b)) = (f(x, a)− βf(b, y), āy + bx̄),

with f(x, a) the polarization of the quadratic form of the previous example. �e previous expression
is a polarization of the quadratic form

f ′(x, y) = (f(x)− βf(y), yx̄).

If we rewrite this, using the usual norm N on the quaternion algebras, we get

f ′(a, b) = (N(a, b)x,−bā).

�is f ′ satis�es (f ′ + f̄ ′)(x1) = N(x1).
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3 Interlude: Special sequence pairs

Remark 3.1.12. �e previous example is not a well behaved associative family, since S⊗Z[1/2]∩B
is not equal to S for algebrasB which have no 2-torsion and 1/2 /∈ B. �e exact problem is, is that
there could be elements x, y such that

[4, 2]−Q([2, 1]) =

(
0 βȳ
y −0

)
mod S,

for y not divisible by 2, since the diagonal part D of S satis�es

DA⊗K ∩A = DA ⊗ .1

Example 3.1.13. We consider, again,

B =

{(
x βȳ
y x̄

)
: x, y ∈ A

}
,

but now with a wrong involution, which does not make it into a composition algebra. We de�ne
the involution1 as (

x βȳ
y x̄

)
7−→

(
x̄ βȳ
y x

)
.

Now, we see that
S =

{(
s 0
0 −s

)
: s ∈ R(1− 2x)

}
.

�is new S has, clearly, be�er properties than the previous S. One easily checks that

f ′(a, b) = (N(a)x+ βN(b)x, bā),

is a quadratic form satisfying all necessary properties. We note that these algebras form a well
behaved associative family and give, therefore, all rise to special sequence pairs.

Proposition 3.1.14. Suppose B is an algebra of the form

B =

{(
x βȳ
y x̄

)
: x, y ∈ A

}
,

for A = R[x]/(x2 − x− α), with involution(
x βȳ
y x̄

)
7−→

(
x̄ −βȳ
−y x

)
,

then B induces a special sequence pair with de�ning representation in B B B
Bop E Bop

B B B

 .

Proof. We know that the proposition holds if 1/2 ∈ B or if everything in B is 2-torsion. So, we
know for each B that either 1/2 ∈ B and the propositions holds, or B ⊗Z Z/2Z ∼= B/(2) satis�es
the proposition. So, suppose [4, 2] − Q([2, 1]) /∈ S for some x ∈ G±(K), y ∈ G∓(K). We know
that the only possible problem, see Remark (3.1.12), is that this element could be of the form(

0 βȳ
y 0

)
mod S,

1�is involution is not random. It is not the usual involution corresponding to the Cayley-Dickinsonproces, but is the
involution of that same construction interpreted as the construction of a hermitian structurable algebra.
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3 Interlude: Special sequence pairs

for y not divisible by 2. We know that ([4, 2] − Q([2, 1])) ⊗ 1 ∈ SZ/2Z. Now, we note that the
theorem follows, because of the form of the S, namely in both cases we know that

nondiag(S) =

{(
0 2βȳ
2y 0

)
: y ∈ R

}
,

with nondiag the projection (
a b
c d

)
7−→

(
0 b
c 0

)
.

�

Remark 3.1.15. �is construction will not work for each family of associative algebras with invo-
lution. Consider, for example, R[x]/(x2 − 1) with involution x 7→ −x. �is algebra behaves very
di�erently depending on the existence of 2-torsion.
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4 �e universal representation

In this chapter, we construct the universal (sequence pair) representation of a sequence pair. �is
will be a Z-graded Hopf algebra. �erea�er, we investigate the (Jordan-)Kantor-like sequence pairs.
�ese are sequence pairs with some additional assumptions. Lastly, we consider sequence pairs
de�ned from hermitian structurable algebras.

4.1 �e universal representation

Now, we prove some lemmas and a theorem generalizing [Fau00, Lemma11-14, �eorem 15]. Most
of the lemmas correspond to the existence of operators ∆, S and how they interact. �is will be
used to show that the universal representation together with these operators and some others forms
a Hopf algebra.

To avoid the need for duplication in what follows, we formulate the lemmas and the theorem as
general as possible. So, we will consider in most lemmas a pair of sequence Φ-groups (G+, G−) with
a pair of sequence group representations in the same algebra A. We will call such representations
paired representations. For these, we can consider the elements (a, b) and [a, b] for a, b ∈ N,
de�ned from x ∈ Gσ(K), y ∈ G−σ(K). We interleave the lemmas with the immediate variants for
sequence pairs as corollaries, to give the reader some understanding of what we try to achieve.

Lemma 4.1.1. If ρ : G −→ A is a paired representation and if φ : A −→ B is an algebra morphism,
then φ ◦ ρ is a paired representation. Moreover, φ(a, b) = (a, b) and φ[a, b] = [a, b] hold for all
a, b ∈ N and x ∈ Gσ(K), y ∈ G−σ(K).

Proof. Trivial. �

Corollary 4.1.2. If ρ : G −→ A is a sequence pair representation and if φ : A −→ B is an algebra
morphism, then φ ◦ ρ is a sequence pair representation.

Lemma 4.1.3. Suppose ρ, ξ : G −→ A,B are paired representations. �en

(ρ⊗ ξ)σn : g 7−→
∑
k+l=n

ρσk(g)⊗ ξσl (g)

is paired representation of G in A ⊗ B. Moreover, if x ∈ Gσ(K), y ∈ G−σ(K), then for all a, b
coprime, we have [na, nb] =

∑
i+j=n[ia, ib]⊗ [ja, jb] for n ∈ N.

Proof. We denote (ρ⊗ξ)σn(x) as xn and ρn(x), ξn(x) as xn (these symbols will be unambiguous). We
are working over a general K , so that we get the result without really interacting with extensions
of scalars. We will prove the 3 properties of Proposition (2.1.5), to demonstrate that it is a pair of
sequence group representations. �is representation is clearly even, as n is odd implies that it can
only be wri�en as a sum of an odd with an even integer, hence it inherits evenness from A and B.
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4 �e universal representation

�e �rst and third property of the proposition are obvious. So, we only need to show that ρ⊗ ξ is
a group homomorphism to prove that it is is a pair of sequence group representations:∑

i+j=n

xiyj =
∑

p+q+r+s=n

(xp ⊗ xq)(yr ⊗ ys)

=
∑

p+q+r+s=n

xpyr ⊗ xqys

=
∑

e+f=n

(xy)e ⊗ (xy)f

= (xy)n.

We also compute that

ad(n)
x (a⊗ b) =

∑
i+j=n

xia⊗ b(x−1)j

=
∑

p+q+r+s=n

xpax
−1
q ⊗ xrbx−1

s

=
∑

e+f=n

ad(e)
x (a)⊗ ad(f)

x (b). (4.1)

We can conclude that
ad(n)
x (ym) =

∑
k+l=n,p+q=m

ad(k)
x yp ⊗ ad(l)

x yq, (4.2)

since ym =
∑

i+j=m yi ⊗ yj .

Now, we need to determine some properties the elements [n,m], (n,m) for n,m ∈ N. We want to
apply �eorem (2.3.3). Equation (4.2) shows that

(n,m) = ad(n)
x (ym) =

∑
i+j=n,k+l=m

(i, k)⊗ (k, l).

So, we can apply �eorem (2.3.3) with as relation ∆ the equality (where we interpret the le�handside
to be in the algebra A⊗B and the right hand side to be a tensor product of algebras), to prove that

[an, am] =
∑
i+j=a

[in, im]⊗ [jn, jm], (4.3)

if n and m are coprime. �

Corollary 4.1.4. Suppose that G is a sequence pair. If ρ is a sequence pair representation of G in A
and if ξ is a sequence pair representation of G in B. �en

(ρ⊗ ξ)σn : g 7−→
∑
k+l=n

ρσk(g)⊗ ξσl (g)

is a sequence pair representation of G in A⊗B.

Proof. From Lemma (4.1.3) we immediately get that Q and T exist and coincide with the usual Q
and T . Moreover, restrictions (2.5) and (2.6) are immediately satis�ed as well, using Lemma (2.4.6)
to consider the equivalent restriction [a, b] = 0 for 3 6= a/b > 2. �
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Lemma 4.1.5. Suppose that ρ : G −→ A is a paired representation, then

ρ ◦ (·−1) : G −→ Aop

is a paired representation. Moreover, the elements (a, b)x,y and [a, b]x,y computed for x ∈ G±(K),
y ∈ G∓(K), using ρ are related to the similar elements (a, b)′x,y, [a, b]

′
x,y computed using ρ◦ (·−1) by

(a, b)x,y = (a, b)′x,y−1 ,

exp(t[a, b]x,y) exp(t[a, b]′x,y) = 1.

Proof. ρσ is a group homomorphism fromGσ(K) toDK ⊂ (A⊗K)N, which is in itself a sequence
Φ-group. It is obvious that Dop can be seen as a sequence Φ-group in Aop. But ρσ ◦ (−1) is a Φ-
group homomorphism from Gσ −→ Dop and this morphism commutes with scalar multiplication.
Hence, it is a sequence Φ-group representation.

We note, for all x ∈ Gσ(K), y ∈ G−σ(K), that ad(n)
x (yn) =

∑
i+j=n(x−1)i · (y−1)n · xj in Aop for

ρ ◦ (·−1) (we used (x−1)1 to denote the xi of ρ ◦ (·−1) to avoid confusion). Evaluated in A, we get
that it coincides with the ad(n)

x ((y−1)n) from ρ. �is proves the relation between the elements of
the form (a, b), (a, b)′.

We note that [a, b], in A, is uniquely determined by

exp(ty)(exp(sx)−1) =
∑

satb(a, b) =
∏

a,b coprime
exp(satb[a, b]),

where the order of the product is increasing on the fractions a/b. We note that conjugating with
exp(sx)−1 in the usual representation ρ, is the same as conjugating with exp(sx)−1 in the repre-
sentation ρ ◦ (·−1) in consideration (it is conjugation with the same element, instead of its inverse,
since we take an inverse and then multiply in the opposite order). So, if we write the computations
for ρ ◦ (·−1) as we would do them in A and in terms of the usual representation ρ, we get

exp(ty−1)(exp(sx))−1
=

∏
a,b coprime

exp(satb[a, b]′),

with the order of the product decreasing on the fractions a/b. �e product of these expressions in
A is

1 = exp(ty)(exp(sx)−1) exp(ty−1)(exp(sx)−1) =
∏

a,b coprime
exp(satb[a, b])

∏
a,b coprime

exp(satb[a, b]′),

with the �rst product increasing on a/b, and the second product decreasing on a/b. Now, we want
to prove the moreover-part. Speci�cally, we use that

1 =
∏

a,b coprime
exp(satb[a, b])

∏
a,b coprime

exp(satb[a, b]′).

So, if we set exp(t[a, b]′′) = exp(t[a, b]′)−1, then we have∏
a,b coprime

exp(satb[a, b]′′) =
∏

a,b coprime
exp(satb[a, b]),

where the order of both products is increasing on a/b. So, we see that all [a, b] = [a, b]′′ (even for
a, b not coprime), as they correspond to the unique elements [a, b] de�ned from the (a, b). �
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4 �e universal representation

Corollary 4.1.6. If ρ : G −→ A is a sequence pair representation of G in A, then ρ ◦ (·−1) is a
sequence pair representation of G in Aop.

Proof. Lemma (4.1.5) shows that this is the case. Speci�cally, the Q and T of ρ ◦ (·−1) and ρ corre-
spond to each other and the restrictions (2.5), (2.6) are preserved (most clearly in their equivalent
form of Lemma (2.4.6)). �

Let G be a pair of sequence Φ-groups and let P be a class of representations of G so that ρ, ξ ∈ S
implies that φ ◦ ρ, ρ⊗ ξ, ρ ◦ (·−1) ∈ P for all algebra morphisms φ with a suitable domain. We also
suppose that the trivial representation (G −→ Φ, with sequence group representations g 7→ (1))
is in P . A class of such representations of a pair G are called P -representations and we call P a
sensible collection of representations of G.

Corollary 4.1.7. Suppose G is a sequence pair, then the sequence pair representations of G form a
sensible collection of representations.

Lemma 4.1.8. Let P be a sensible collection of representations of G. Suppose that ρ : G −→ A is a
P -representation, then ρ̂ with ρ̂σn(x) = ad(n)

x is a P -representation.

Proof. Consider m : A ⊗ Aop −→ EndΦ(A) de�ned by m(a ⊗ b)(c) = acb and let χ = ρ ◦ (−1).
�en we can write

m ◦ (ρ⊗ χ) = ρ̂.

Hence, ρ̂ is a P -representation of G in A. �

Corollary 4.1.9. If ρ : G −→ A is a sequence pair representation of G in A, then ρ̂, with ρ̂σn(x) =

ad(n)
x , is a sequence pair representation.

Remark 4.1.10. �e previous corollary shows, among other things, that we are justi�ed to speak of
the adjoint representation of sequence pairs.

De�nition 4.1.11. For a sequence pair G, the universal (sequence pair) representation is a
unital associative algebra U together with a sequence pair representation φ such that for all se-
quence pair representations ψ : G −→ A, there exists a unique algebra morphism θ : U −→ A, so
that θ ◦ φ = ψ.

Now we will construct the universal representation for sequence pairs. Take the unital associative
algebraB generated by symbols gi for i ∈ N and g, g′ ∈ G±(Φ). We take the quotient with respect
to the following relations:

1. g0 = 1,

2. (λ · g)n = λngn,

3. (gg′)n =
∑

i+j=n gig
′
j ,

4. (1)n = 0, n > 0,

5. hi = 0 for h ∈ H1
σ(Φ), i odd,

6. gjgi =
∑

a+2b=i+j

(
a
i−b
)
ga(g

2
1 − 2g2)2b,

7. [gj , g
′
i] =

∑
a+c=i
b+c=j
c 6=0

g′agb[g, g
′]2c,
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4 �e universal representation

where the last two relations are equations (2.1) and (2.2). We call this quotient B′. We can give B a
Z-grading by pu�ing gn ∈ B±n with the sign the same as the group G± of which g is an element.
Since the asked relations are compatible with this grading, we see thatB′ inherits this grading. We
have sequence Φ-group representations of G+ and G− by mapping

g 7−→ (1, g1, . . . , gn, . . .),

for g ∈ G±(Φ). Now, we divide out the restrictions that are required to make this a sequence pair.
To be speci�c, we divide out by the ideal generated by

Tx(y)n =[3n, n],

Qx(y)n =[2n, n],

[a, b] =0 for 3 6= a/b > 2,

and all the linearizations of these expressions for all x ∈ Gσ(Φ), y ∈ G−σ(Φ), n ∈ N. Note that we
used the condition of Lemma (2.4.6) instead of conditions (2.5) and (2.6), as they are equivalent. All
used relations are compatible with the grading. We call the algebra we have constructed U(G) and
we denote the sequence pair representation of G in it with γ. �is is, clearly, a universal sequence
pair representation, as all relations must necessarily hold in any representation of G.

�eorem 4.1.12. Suppose that P is a sensible collection of representations of G and suppose that
U(G) is a universal P -representation generated by the gi, for g ∈ G±(Φ) and i ∈ N, then U(G)
is a cocommutative Hopf algebra. If, in addition, U(G) has a Z-grading as an algebra with gi being
σi graded if g ∈ Gσ(Φ), then it is a Z-graded Hopf algebra. Moreover, if there exists a faithful P -
representation, then γ is a faithful representation.

Proof. We �rst prove the moreover-part. It is clear that if the �rst i elements in γ(g) are zero, then
g must be an element of H i(K), as there exists a faithful representation that factors through the
universal representation. Since the representations are even, we also know that g ∈ H1(K) implies
that (g)1 = 0. Hence, the representation is faithful.

We know that U = U(G) is a unital associative algebra, so we have maps µ : U ⊗ U −→ U
and η : Φ −→ U which correspond to the multiplication and unit. Since P is sensible, we know
that γ ⊗ γ is a P -representation of G. We de�ne ∆ : U −→ U ⊗ U as the unique map such that
∆ ◦ γ = γ ⊗ γ. We note that

∆(gn) =
∑
i+j=n

gi ⊗ gj .

As P is sensible, we know that γ ◦ (·−1) is a P -representation of G in Uop. We take the unique
S : U −→ Uop such that S ◦γ = γ ◦ (·−1). For the �nal map, the counit ε, we use that there always
exists a P -representation ρ : G −→ Φ, namely the trivial representation.

Now, we show that U forms, together with these maps, a Hopf algebra. We see that ∆ is coasso-
ciative on the generators gi of U , and thus on the whole of U , as

(Id⊗∆) ◦∆(gn) =
∑

i+j+k=n

gi ⊗ gj ⊗ gk = (∆⊗ Id) ◦∆(gn).

We also see that ε is the counit, since

(ε⊗ Id) ◦∆(gn) =
∑
i+j=n

ε(gi)gj = Id(gn) = (Id⊗ ε) ◦∆(gn).
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4 �e universal representation

Now, consider the algebra homomorphism A : U −→ EndΦ(U) de�ned by

A = m ◦ (Id⊗ S) ◦∆ with m(a⊗ c)(b) = abc.

On generators gn, we see that A(gn) = ad(n)
g . Note that

A(gn)(1) = ad(n)
g (1) = δn0 = ε(gn)1 with δij the Kronecker delta.

Since A is an algebra homomorphism, we conclude that A(x)(1) = ε(x)1 = η ◦ ε(x) for all x ∈ U ,
which proves that

µ ◦ (Id⊗ S) ◦∆ = η ◦ ε.

Similarly, we can show that
µ ◦ (S ⊗ Id) ◦∆ = η ◦ ε,

by considering ad(n)
g−1 . Hence,U is a Hopf algebra. It is also cocommutative since it is cocommutative

on the generators. Note that the maps S,∆, ε are compatible with the Z-grading onU as an algebra,
hence it is also a Hopf grading. �

Corollary 4.1.13. �e universal representation (U(G), γ) of a sequence pair G is a cocommutative
Z-graded Hopf algebra and γ is a de�ning representation.

Remark 4.1.14. • One easily constructs the universal weak sequence pair representation by
constructing the same algebra B′ in which both sequence Φ-groups have representations
and then dividing out by

Tx(y)n = [3n, n] x ∈ Gσ(Φ), y ∈ G−σ(Φ),

Q2
x(h)n = [2n, n] x ∈ Gσ(Φ), h ∈ H1

−σ(Φ),

Q1
x(y) = [2, 1] x ∈ Gσ(Φ), y ∈ G−σ(Φ),

[a, b] = 0 a/b > 3, x ∈ Gσ(Φ), y ∈ G−σ(Φ),

[a, b] = 0 a/b > 2, x ∈ Gσ(Φ), h ∈ H1
−σ(Φ).

One easily sees, using Lemmas (4.1.1), (4.1.3) and (4.1.5), that being the weak sequence pair
representations of a weak sequence pair form a sensible collection of representations. So, the
universal weak sequence pair representation is a Z-graded Hopf algebra.

• We did set up the structure of the lemmas and the theorem so that we can later easily in-
troduce Jordan-Kantor-like sequence pairs without needing to repeat the arguments of this
section. Speci�cally, if 1/2 ∈ Φ, these are sequence pairs with an additional operator P .
Moreover, we will also be able to use this theorem to prove that the universal representation
of an extended version of these Jordan-Kantor-like sequence pairs to general Φ, is a Hopf
algebra.

• Suppose that x ∈ G±(K), y ∈ G∓(K), for a sequence groupG. By Lemma (2.4.18), we know
that the family (n,m) = ad(n)

x (ym) satis�es the conditions of �eorem (2.3.3). �erefore, we
see for a, b coprime, that (1, [a, b], [2a, 2b], . . .) is a divided power series.

• We assumed that the representations were representations of sequence Φ-groups. However,
this restriction is not necessary. We only made that assumption because we are only in-
terested in sequence Φ-groups. A small part where the assumption of class 2 (although we
formulated the restriction in fact for sequence Φ-groups) plays a role, is the proof that the
universal P -representation is faithful if there exists a faithful representation, making use of
the fact that we assumed that all representations are even.
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4 �e universal representation

So, to introduce a good notion of a universal representation for pairs of sequence groups
of class higher than 2, one needs to decide how one generalizes evenness. Although just
requiring that all P -representations ρ satisfy ρ(Hn)k = 0 if 0 6= k ≤ n, might just do the
job (notice, however, that this would have di�erent properties).

Proposition 4.1.15. Suppose that G is a sequence pair such that H1
σ = 0 for σ = ±1, then G forms

a Jordan pair with the operator Q.

Proof. �is is an adaptation of a theorem of Faulkner [Fau00, �eorem 5]. Speci�cally, it is an
adaptation of the part of the proof where the axioms of a Jordan pair are proved.

First, we note that (x−1) = −x for all x ∈ G±(K). We recall the map A = m ◦ (Id ⊗ S) ◦ ∆
with m(a ⊗ b)(c) = acb, from any Hopf algebra into its endomorphism algebra. Take x, z ∈
Gσ(K), y, w ∈ G−σ(K). We note that Axi = ad(i)

x for any x ∈ Gσ(K). Now, we determine the
operator Dx,y(z)1 = Qx,z(y)1 = ad(1)

x ad(1)
z (y1) = −Ax1Ay1(z1) = −[x, [y, z]] = −[[x, y], z].

We know that Ax3(y1) = Tx(y)2 = 0. So, if we apply A to both sides, we get

Ax3Ay1 −Ay1Ax3 −Ax2Ay1Ax1 +Ax1Ay1Ax2 = 0.

If we let both sides act on w, we get, since [y1, w1] ∈ H1
−σ(Φ) = 0 and Tx(w) ∈ H1

σ(Φ) = 0 that

QxDy,x −Dx,yQx = 0.

�is is the �rst axiom for Jordan pairs.

�e second axiom is easily checked using 2y2 = y2
1 to verify

[Qx(y)1, y1] = [x1, Qy(x)1].

�e last axiom follows from

(Qx(y))2 = Ax4(y2) = x4y2 − x3y2x1 + x2y2x2 − x1y2x3 + y2x4,

and le�ing it act on w. �is means that

QQx(y) = Ax4Ay2 −Ax3Ay2Ax1 +QxQyQx = QxQyQx,

since Ay2(w1) can be computed from (tw)sy3 = (tw)3 as the term belonging to s2t, so it is zero.
Similarly, we get that

Ay2 [x1, w1] = [Qy(x)1, w1] + [[y1, x1], 0] + [x1, Ay2w1] = 0,

where the interaction with the Lie bracket is a consequence of Lemma (2.1.9). �

4.2 Kantor-like sequence pairs

In this section, we investigate a speci�c subset of the (weak) sequence pairs that share certain
properties with representations corresponding to sequence groups associated with Kantor pairs.
To be exact, we are interested in three properties, which we will already mention, but not formalize
yet. So, suppose that G is a sequence pair. Firstly, we need that H1

± = [G±, G±]. Secondly, we
want that the H1

± have a faithful action (we will spell out in this section what this exactly means).
�irdly, we want the possibility to add a grading element in the TKK Lie algebra so that there is
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4 �e universal representation

still a representation in the endomorphism algebra of this Lie algebra. Note that we will also need
to generalize the TKK Lie algebra in this section, in order to formalize the third property. We will,
in fact, see that it is always possible to add a grading element.

Now, we spell out what it means for H1
± to have a faithful action. We have maps

Q1 : H1(K) −→ Hom(G∓(K), G±(K)).

We want that if
Q1(h)(xH1

∓(Φ))H1
±(Φ) = Q1(g)(xH1

∓(Φ))H1
±(Φ)

holds for all x ∈ G∓(Φ), then h = g. �is formulation may seem odd. Another formulation, which
makes use of the universal representation (or any other de�ning representation), would be that if
h, g ∈ H1

±(Φ) and if [h2, x1] equals [g2, x1] for all x ∈ G∓(Φ), then h and g should be equal.

De�nition 4.2.1. We call a (weak) sequence pair G with H1
± = [G±, G±] and faithful actions of

H1
± in the just described sense, a Kantor-like (weak) sequence pair.

Remark 4.2.2. �ese properties hold for the sequence pairs constructed from Kantor pairs in �e-
orem (2.4.8), by Proposition (1.11.3), as the spaces L2σ in the TKK Lie algebra, consist exactly out
of the operators K(x, z) with K(x, z)(y) = Vx,y(z) − Vz,y(x), and [x, z] = K(x, z) in the Lie
algebra. Moreover, the equalities between those operators are exactly determined by their action
on L−σ . In the broader context of sequence groups related to Jordan-Kantor pairs, the Kantor pairs
are exactly those pairs for which the sequence group is a Kantor-like sequence pair, as indicated by
Proposition (1.11.3).

In what follows in this section, we identify G± with G±(Φ), except if we indicate that we will
use the Φ-group structure. Note that this is not deceiving if we want to use the module structure
because G±(K) = G±(Φ) ⊗K as a Φ-module. We do this because we will construct a 5-graded
Lie algebra L of which all non 0-graded elements correspond to the modules G±(Φ). We will only
need the Φ-group structure to prove certain statements about this Lie algebra.

De�nition 4.2.3. Suppose that G is a Kantor-like (weak) sequence pair and that U is its universal
representation, then we call (G−)1 ⊕ (G+)1 ≤ U with operation

Vx,y(z) = [[x1, y1], z1] = [ad(1)
x , ad(1)

y ](z1) = −ad(1)
z ad(1)

x (y1),

the Kantor pair associated with G. �is operation is internal since the right hand side is the
(1, 1)-linearization of −Q1

x(y) with respect to x.

We proceed by constructing the TKK Lie algebra. In fact, we already have all the ingredients.
We consider the associated Kantor pair1 (G−)1 ⊕ (G+)1 in the universal representation and a
Lie algebra M acting on it, namely M ∼= H1

− ⊕ InDer(G) ⊕ H1
+ which we identify with the

elements of the adjoint representation. We de�ne InDer(G) to be the linear span of the operators
Vx,y = [ad(1)

x , ad(1)
y ] with x ∈ G±, y ∈ G∓ (where we also allow x, y to be elements of G/H1

±

instead of the full groups, for notational convenience). And h ∈ H1
± is identi�ed with ad(2)

h . We
take in fact a quotient of the just constructed Lie algebra, as we assume that if Vx,yu1 = Va,bu1 for
all u ∈ G± then we say that Vx,y = Va,b. We did just say that it is a Lie algebra, now we prove it.

1In fact, we could just see it as a sign graded Lie triple system, and take the standard embedding. �is would yield
the same result as the construction of this section. However, the close relation of the construction, as executed in
this section, will make it very easy to de�ne the action of the universal sequence pair representation on the TKK Lie
algebra. Moreover, the construction of the TKK Lie algebra in this section is applicable to all sequence pairs such that
H1 = [G,G].
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Lemma 4.2.4. InDer(G) is a Lie algebra.

Proof. It is su�cient to prove that [Vx,y, Vu,v] ∈ InDer(G), for x, u ∈ G+, y, v ∈ G−, since they
are part of the, necessarily associative, endomorphism algebra of a Φ-module. �is easily follows
from the following claim:

[[ad(1)
x , ad(1)

y ], [ad(1)
u , ad(1)

v ]] = [ad(1)
Vx,yu1

, ad(1)
v ] + [ad(1)

u , ad(1)
Vx,yv1

] =: VVx,yu,v − VVx,yv,u,

which we will prove now. First, we note that ad(1)
Vx,yu

= [Ad(1)
x ,Ad(1)

y ](ad(1)
u ) where Ad(·)

x denotes
the adjoint representation of the adjoint representation ad(·)

x , as Vx,y(u1) = [ad(1)
x , ad(1)

y ](u1) holds
in the universal representation. Now, we note that

[Ad(1)
x ,Ad(1)

y ](ad(1)
z ) = [[ad(1)

x , ad(1)
y ], ad(1)

z ],

for all z. Which proves the claim if we �rst use that [ad(1)
x , ad(1)

y ] is a derivation. �

Lemma 4.2.5. �e algebra M = H1
− ⊕ InDer(G)⊕H1

+ is a Lie algebra.

Proof. Once again, it is su�cient to prove that the brackets are internal, since this is a submodule
of an associative algebra. �ere are two types of brackets that need to be checked, namely those of
the form [H1

−,InDer(G)] or [H1
−, H

1
+].

�is can easily be proved if we identify each element with [ad(1)
x , ad(1)

y ] for some x and y, which we
can also do for H1

± since H1
± = [G±, G±]. So we compute

[l, [ad(1)
x , ad(1)

y ]] = [[l, ad(1)
x ], ad(1)

y ] + [ad(1)
x , [l, ad(1)

y ]],

for l ∈ M . Note that the proof of the previous lemma shows that if l = Va,b, then we have
[ad(1)

Va,bx
, ad(1)

y ] + [ad(1)
x , ad(1)

Va,by
], where we let Va,b act as [Ad(1)

a ,Ad(1)
b ] on H1

σ , which proves that
brackets of the form [H1

−,InDer(G)] are internal. �e other type of brackets can analogously be
proved to be internal as well. Speci�cally, one shows that

[ad(2)
h , [ad(1)

x , ad(1)
y ]] = [ad(1)

Q1
h(x)1

, ad(1)
y ]− [ad(1)

Q1
h(y)1

, ad(1)
x ] = VQ1

h(x)1,y − VQ1
h(y)1,x,

by making use of the fact that [ad(2)
h , ad(1)

x ] = Ad(2)
h (ad(1)

x ) = ad(1)

Q1
h(x)

. �

Now we want to prove that the Kantor part, together with M forms a Lie algebra.

Proposition 4.2.6. �e algebra L = H1
− ⊕ (G−)1⊕ InDer(G) ⊕(G+)1 ⊕H1

+ is a Lie algebra.

Proof. We only need to check the Jacobi identity. If three elements are inM ≤ L then we know that
this is the case. If, only two elements are in M and one is in the Kantor pair part, then we are done
since we de�ne [f, x] = f(x) for f ∈M and x in the Kantor pair part, and since [f, g] = fg − gf
for f, g ∈M . When there are three elements in the Kantor pair part, it is also trivial, as the Jacobi
identity holds in the universal representation and since all computations can be done there (since
[[x1, y1], z1] = [ad(1)

x , ad(1)
y ](z1) =: [[ad(1)

x , ad(1)
y ], z1]).

At last, we check whether the Jacobi identity holds when only two elements are in the Kantor pair
part. �is is, in essence the subject of the previous two propositions, since we saw each element of
M already as a bracket of two elements of the Kantor pair part, and proved that these operations
are internal, by proving that [f, [x1, x2]] = [f(x1), x2] + [x1, f(x2)]. �
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We stress that h ∈ H1
± seen as an element of L can be interpreted as an element of the univer-

sal representation and as an element of the adjoint representation on the universal representation,
depending on the context. Speci�cally, if we interpret h2 to be an element of the universal rep-
resentation, then we get [h2, g1] = ad(2)

h (g1) = [ad(2)
h , g1]. Additionally, equalities making use of

these di�erent interpretations can o�en be carried over to the other context. When we do that, we
will explain why the equalities carry over. Even the elements Vx,y can be seen as elements of the
universal representation, modulo some identi�cations on these elements. Speci�cally, we can o�en
think of Vx,y as [x1, y1] (notice, however, that there can be a lot of di�erent [u1, v1] associated with
the same Vx,y , so some caution is required).

Now, we want to determine the TKK representation in the endomorphism algebra of L. We can do
this by making the universal representation act on this Lie algebra. So, we consider the following
central cover of L, namely L̃ = H1

−⊕ (G−)1⊕N ⊕ (G+)1⊕H1
+ withN the submodule generated

by [x1, y1] for x ∈ G±,y ∈ G∓. Analogous to Lemma (4.2.4)2, one shows thatN is a Lie subalgebra
of U . �is cover is contained in the universal representation.

�ere is a natural action of the universal representation on this central cover. Namely, we use

A = m ◦ (Id⊗ S) ◦∆,

withm(a⊗b)(c) = acbwhich maps from the universal representation to its endomorphism algebra.
A�er the following remark, we prove thatA induces a representation in the endomorphism algebra
of L̃.

Remark 4.2.7. Notice that this A coincides with the adjoint representation. Speci�cally, it is the
unique mapping of the universal representation into its endomorphism algebra corresponding to
the adjoint representation. As such, we can use some results about the adjoint representation of
sequence groups. Namely, the moreover part of Lemma (2.1.9) indicates that

A(xn)(ab) =
∑
i+j=n

A(xi)(a)A(xj)(b).

As such, we realize that
A(c)(ab) =

∑
A(c′i)(a)A(c′′i )(b),

for all c, for some c′i, c′′i determined by ∆(c) =
∑
c′i ⊗ c′′i . Since the universal representation is

cocommutative, we learn that

A(c)[a, b] =
∑

[A(c′i)(a), A(c′′i )(b)].

Lemma 4.2.8. Let U be the universal representation of a Kantor-like sequence pairG, thenA(U)(L̃)
is contained in L̃.

Proof. We remark, as Remark (4.2.7) indicates, that it is su�cent to show that

A(U)((G−)1 ⊕ (G+)1) ⊂ L̃,

as (G−)1 ⊕ (G+)1 generates L̃. Since A is an algebra morphism, it is su�cient to check it for
generators xn, for x ∈ Gσ , acting on y1 for y ∈ G±σ . If the signs of x and y are opposite, then this
follows exactly form restrictions (2.3), (2.4) and (2.5). If they are the same, it requires an argument.
We see that (ty)sx

−1

n+1 = sntAxn(y1)+ lower order terms in s. On the other hand, we know that
(ty)sx

−1
= (ty1, t

2y2 + st[x, y]) in the sequence Φ-group. So, we see that Ax1(y1) = [x1, y1] ∈ L̃
and that Axn(y1) = 0 for n ≥ 2 since there are no terms belonging to snt in (ty1, t

2y2 + st[x, y])n,
as all terms a in (ty1, t

2y2 + st[x, y])n+1 do necessarily satisfy degt(a) ≥ degs(a). �

2It is less convoluted, as we do not have to li� our computations to the adjoint representation.

66



4 �e universal representation

Now, we just need to check whether the action is trivial on the kernel of the projection of L̃ onto
L. Suppose that Vx,y has trivial action, then we get u1 · Vx,y = [u1, [x1, y1]] = −Vx,yu1 = 0.
Additionally, we see that Ad(2)

u (Vx,y) = 0 in the adjoint representation of the adjoint representation.
However, if ad(2)

u ([x1, y1]) = h2 and if we apply A, then we get Ad(2)
u (Vx,y) = ad(2)

h . Since the
action of H1

± is faithful, this means that h = 0. So the action on the kernel is of the projection of L̃
onto L onto L is trivial.

We will denote L as TKK(G) or, in reference to what we will do later, as TKK(G, InDer(G)).

Remark 4.2.9. �e constructed representation has some special properties. Namely, we have

xn · [a, b] =
∑
i+j=n

[xi · a, xj · b]

for all a, b ∈ L and n ∈ N. We argued why this is the case in Remark (4.2.7). Note, moreover,
that this is a sequence pair representation, as we just need to let U ⊗ K (with U the universal
representation) act on L̃⊗K using the adjoint representation, and then divide out by Z(L̃⊗K) =
Z(L̃)⊗K which gets mapped to itself under the action of U ⊗K .

�ere are 2 equations that need to hold in order to add a grading element. We �rst prove that these
are satis�ed for sequence Φ-groups. We remark that if we were not working with sequence Φ-
groups, one would still be able to prove that the possibility to add a grading element is equivalent
to these equations.

Lemma 4.2.10. Let G be a sequence Φ-group, and ρ a sequence Φ-group representation. Each x ∈ G
satis�es

• 3(x3 − x1x2) + x3
1 = 0,

• 4x4 − 2x2
2 + x1x3 − 2x3x1 + x2x

2
1 = 0.

Proof. We work in G(K) with K = Φ[t]/(t2 − t − 1). �e �rst equation follows from computing
the third coordinate of (t · x)((1− t) · x)(−1 · x) ∈ H1. We compute this explicitly. We see that

(t · x)((1− t) · x) = (1, x1, 3x2 − x2
1, 4x3 − x1x2, . . .),

so when we multiply this with −1 · x, we get

(1, 0, 4x2 − 2x2
1, 3x3 − 3x1x2 + x3

1, . . .),

where we needed in that [x1, x2] = 0 in order to get both expressions. Note that all representations
are assumed to be even, so we get the �rst equality.

�e second equality can be proved, by comparing the fourth coe�cients of t ·H (x(−x)) × (1 −
t) ·H (x(−x)) and x(−x) (where the scalar multiplications ·H with t, 1− t are done inH1), as they
should equal. �

�eorem 4.2.11. Let G be a (weak) sequence pair, and L a 5-graded Lie algebra such that there
is a de�ning (weak) sequence pair representation of G in the endomorphism algebra of L. Suppose,
moreover, that Gσ ∼= Lσ ⊕ L2σ with some multiplication (a, b)(c, d) = (a+ c, b+ d+ ψσ(a, c)) for
bilinear forms ψσ , in such a way that x1(y) = [x, y] for x ∈ Lσ and x2(y) = [x, y], x1(y) = 0 for
x ∈ L2σ , and for all y ∈ L. �en, we can add a grading element.
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4 �e universal representation

Proof. First, we extend the action of the sequence groups G± on ζ . We note that the possible
actions on ζ are restricted. Namely, we can identify ζ with the element 2e2 + e1 − e−1 − 2e−2 in
the endomorphism algebra of L, where ei are the projection operators ei : L −→ Li, as such the
action ad(n)

x (2e2 + e1− e−1− 2e−2) should correspond to an inner derivation. However, this does
not necessarily determine the element in L uniquely since there can be multiple elements with the
same inner derivation. We determine the unique sensible element.

We can prove that for any element e of the endomorphism algebra the following equation holds3

ad(n)
x (e) · u = xn · e(u)−

∑
i+j=n
i 6=n

ad(i)
x (e) · (xj · u),

for all n. In particular, it will hold for the grading element ζ . We only prove it for ζ . It holds by
de�nition for n = 1. Next, we prove it for n = 2, by calculating

ad(2)
x (ζ) · u = (x2ζ − x1ζx1 + ζ(x−1)2) · u

= x2 · [ζ, u]− x1 · [ζ, x1 · u] + [ζ, (x−1)2 · u]

= x2 · [ζ, u]− [x1 · ζ, x1 · u]− [ζ, x2 · u],

where the last equality holds because x2 + (x−1)2 = x2
1 for all x and [x1, ζ] = x1ζ − ζx1, since

0 = (xx−1)2 = x2 + (x−1)2 − x2
1

For n = 3, 4 the calculation is similar using strong induction, but we will not only need x2 +
(x2)−1 = x2

1. We will also need x3 +x−1
3 = x2x1−x1x

−1
2 and x4 +x−1

4 = x3x1−x1x
−1
3 −x2x

−1
2 .

We also used suggestive notation [ζ, y] for the action of ζ . �is does, however, not indicate any
assumptions on the interaction of ζ with elements xn even if we write [xn · ζ, y]. For n = 5 this
does not ma�er any more, since x5 · ζ = 0 by the grading.

We start by determining what is necessary (and su�cient) for x ∈ G+ to ensure that xn · ζ is
an inner derivation. For x1 this is trivial, as x1 · ζ is, and should be, −x1 ∈ L. For x2 we set
x2 · ζ = (x2

1 − 2x2). Firstly, this form is necessary by

x2 · [ζ, u] = [x2 · ζ, u]− [x1, [x1, u]] + [ζ, x2 · u],

which leads to
−2x2 · u+ x2

1 · u = [x2 · ζ, u].

We still need to prove that x2 · ζ ∈ L. We compute that x(−x) = (1, 0, 2x2 − x2
1, 0, . . .). Since

there is a scalar multiplication on H1
+, we see that (x2

1 − 2x2) ∈ L.

Now, we check the higher coordinates. We prove that the equations which are necessary for

x3 · ζ = 0, x4 · ζ = 0

are exactly the equations of Lemma (4.2.10). We get

x3 · [ζ, y] = [x3 · ζ, y] + [x2 · ζ, x1 · y]− [x1, x2 · y] + [ζ, x3 · y].

If we assume that y is either −1 or −2 graded, we get

−3x3 · y = (x2
1 − 2x2)x1 · y − x1x2 · y + [x3 · ζ, y].

3�ere are no assumptions related to the invertibility of scalar. Speci�cally, what this equation says, is that exp(x) is
an automorphism if ad(5)

x (ad y) = 0 and ad(6)
x (ad y) = 0 for all y ∈ L. We already hinted at this in Remark (2.4.9).

68



4 �e universal representation

�us, we get
−[x3 · ζ, y] = 3x3 · y − 2x2x1 · y − x1x2 · y + x3

1 · y.

�is means that 3(x3−x1x2)+x3
1 must act as 0 onL, since we can assume that x1 and x2 commute

as [x1, x2] = x(−x)3 = 0. So, x3 interacts nicely with ζ if and only if the �rst equation is satis�ed.
Similarly, one can check that x4 · ζ = 4x4 − x3x1 − 2x2

2 + x2x
2
1.

�is de�nitely extends the action of both groups to L together with the grading element. Since ζ
was identi�ed with an element in the endomorphism algebra of L, the restrictions which make this
pair of sequence groups a sequence pair remain unchanged. �

Corollary 4.2.12. Each (weak) Kantor-like sequence pair G has a weak sequence pair representation
as Lie exponentials in the endomorphism algebra of a Lie algebra

TKK(G) = H1
− ⊕ (G/H1)− ⊕ L0 ⊕ (G/H1)+ ⊕H1

+,

with grading element contained in L0. Moreover if 1/6 ∈ Φ, each (weak) Kantor-like sequence pair
has a de�ning sequence pair representation.

Proof. We only need to prove the moreover part. We will prove that the earlier constructed TKK
representation is a sequence pair representation. We want to prove that the (1, [a, b], [2a, 2b], . . .)
are elements of the groups for coprime a, b di�erent from 1. We note that we can apply �eorem
(2.3.3), by Remark (4.2.9) on the relation

a∆
∑

bi ⊗ ci if and only if a[u, v] =
∑

[biu, civ].

�e [a, b] are exponentials and are thus, by Lemma (2.4.13), contained in the groups G+, G−. �

Corollary 4.2.13. For each Kantor pair P = (P±, V
±) over Φ with 1/30 ∈ Φ, there is a unique

(weak) Kantor-like sequence pair G such that

(G/H1)σ = Pσ,

and that

[ad(1)
x , ad(1)

y ](z1) = V σ
x1,y1(z1),

for x, z ∈ Gσ, and y ∈ G−σ . Moreover, we can endow the associated pair with a sequence pair
structure, i.e. there exists a Q satisfying (2.4) for a de�ning representation satisfying (2.6).

Proof. �e existence of such a sequence pair follows from �eorem (2.4.8). �e uniqueness follows
from the fact that each weak Kantor-like sequence pair, has a representation in the endomorphism
algebra of a Lie algebra TKK(G) as exponentials. We note that all these Lie algebras coincide with
the TKK Lie algebra TKK(P, InDer + Φζ) of P . So, all possible (weak) Kantor-like sequence pairs
have the same de�ning representation, which means that they are isomorphic. �

If 1/5 /∈ Φ we do not know of the existence of a sequence pair corresponding to a Kantor pair.
However, we do know that if it exists, then it must be unique.
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4 �e universal representation

4.3 Jordan-Kantor-like sequence pairs

De�nition 4.3.1. A sequence pair G over Φ with 1/2 ∈ Φ is Jordan-Kantor-like if there exists
operators

Pσ(K) : Gσ(K) −→ HomSet(H
1
−σ(K), Gσ(K))

and a de�ning representation of G, such that for all x ∈ Gσ(K), h ∈ H1
−σ(K)

Px(h)n = [3n, 2n], (4.4)

and
[a, b] = 0, (4.5)

hold, for 2 6= a/b > 3/2. A weak Jordan-Kantor-like sequence pair is a weak sequence pair
with and additional operator P 1

x (h) ∈ G/H1
σ(K) such that P 1

x (h)1 = [3, 2]. �e (weak) Jordan-
Kantor-like sequence pair representations are exactly the sequence pair representations of a
Jordan-Kantor-like sequence pair that satisfy these additional restrictions.

Remark 4.3.2. • �e class of (weak) Jordan-Kantor-like sequence pair representations of a Jor-
dan Kantor-like sequence pair is a sensible collection of representations. �is is easily proved,
using Lemmas (4.1.1), (4.1.3) and (4.1.5). It is obvious which additional relations must by di-
vided out to construct the universal (Jordan-Kantor-like sequence pair) representation. More-
over, these relations are compatible with the Z-grading. So, �eorem (4.1.12) proves that the
universal representation is a cocommutative Z-graded Hopf algebra.

• �e TKK representation of any Jordan-Kantor pair (1/30 ∈ Φ) is a Jordan-Kantor-like se-
quence pair representation.

• We chose to immediately require that the [a, b] are zero instead of saying that ad(i)
x (yj) =∑

t∈U t for someU . Note that these are equivalent. �is can be proved analogously to Lemma
(2.4.6).

• If Φ is a �eld of characteristic di�erent from 2 and 3, we will see that each sequence pair
representation of a Jordan-Kantor-like sequence pair is a Jordan-Kantor-like sequence pair
representation.

• Later, in De�nition (8.2.1), we will reconsider what the Jordan-Kantor-like sequence pairs
exactly are. �is will allow us to introduce them if 1/2 /∈ Φ. �e new notion may be a bit
more restrictive if 1/3 /∈ Φ. Restrictions (4.4) and (4.5) are still part of the de�nition. We will
make an additional assumption so that we can guarantee that there is a sensible notion of an
inner derivation algebra and a sensible action on the TKK Lie algebras.

In this section, we also identify G± with G±(Φ). Consider the Lie subalgebra L̃ of the universal
representation U , given by

L̃ = (H1
−)2 ⊕ (G−)1 ⊕ L0 ⊕ (G+)1 ⊕ (H1

+)2,

where L0 is the submodule spanned by the [a1, b1], [g2, h2] for a ∈ G+, b ∈ G−, g ∈ H1
+, h ∈ H1

−.
Brackets of the kind [(H1

σ)2, (G−σ)1] ∈ L̃ are internal. Speci�cally, we know that [g2, b1] = Q1
g(b)1.

All other brackets are trivially internal, or are internal if [L0, L̃] ⊂ L̃. �is is easily checked using
the operator Q1, the (1, 1)-linearization of Q1 and the (2, 2)-linearization of Q2.
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4 �e universal representation

Lemma 4.3.3. �ere is a (weak) Jordan-Kantor-like sequence pair representation in the endomorphism
algebra of L̃, de�ned as x 7→ (Id, . . . , A(xn)|L̃, . . .). Moreover, this representation can be extended so

that L̃ contains a grading element.

Proof. Analogous to Kantor-like sequence pairs, the action is internal if we let x ∈ G+ act upon
(G−)1 ⊕ (G+)1 ⊕ (H1

+)2. Only for the action upon an h in L0 or (H1
−)2, we need to see why the

action is internal. We assume that the representation is in standard form and that x = (x1, s), so
that

x2 · h = [x1, [x1, h]]/2 + [s, h2] = −[x1, Q
1
h(x)1]/2 + [s, h2],

x3 ·h = P 1
x (h)1 and x4 ·h = Q2

x(h)2. As a consequence, x also maps L0 to L̃ since L0 is generated
by all the other parts of L̃, upon which x acts well.

By �eorem (4.2.11), we can add a grading element compatible with the sequence pair representa-
tion. �

Consider L′0, the quotient of L0 (with grading element) by se�ing l = m if they act the same on

(H1
−)2 ⊕ (G−)1 ⊕ (G+)1 ⊕ (H1

+)2.

�en
L = (H1

−)2 ⊕ (G−)1 ⊕ L′0 ⊕ (G+)1 ⊕ (H1
+)2

is a Lie algebra. We note that this is L̃/Z(L̃) since 2 is invertible and since there is a grading
element. Suppose that xn · z with z ∈ Z(L) is not contained in Z(L). �en n is necessarily equal
to 2. Note that x2 = x2

1/2 + s, i.e. it is a polynomial in inner derivations, which map Z(L) to 0.

We call the representation of a Jordan-Kantor-like sequence pair in the endomorphism algebra of
L the TKK-representation. We note that if 1/6 ∈ Φ the construction of the TKK Lie algebra
coincides with the usual TKK representation of the associated4 Jordan-Kantor pair

Corollary 4.3.4. For each Jordan-Kantor pair P over Φ with 1/30 ∈ Φ, there exists a unique (weak)
Jordan-Kantor-like sequence pair G with associated Jordan-Kantor pair P . Moreover, if 1/6 ∈ Φ,
then each weak Jordan-Kantor-like sequence pair has a de�ning Jordan-Kantor-like sequence pair
representation.

Proof. We only need to prove the moreover part. �e action on the TKK Lie algebra induced by the
Hopf algebra satis�es xn · [a, b] =

∑
i+j=n[xi ·a, xj ·b] for all n. So, we can apply the corresponding

either part of �eorem (2.4.8). �

Corollary 4.3.5. If 1/6 ∈ Φ, then each sequence pair has a de�ning Jordan-Kantor-like sequence
pair representation.

Proof. We prove that each sequence pair representation is a weak Jordan-Kantor-like sequence
pair representation. In that case, the corollary follows from Corollary (4.3.4). We compute, for
x ∈ G±(K), h ∈ H1

∓(K), that

[3, 2] = ad(3)
x (h2) = ad(2)

x ad(1)
x (h2)− 1/3(ad(1)

x )3(h2) = −QxQh(x)1 + 1/3Q1,(1,1)
x,x Qh(x)1

with Q1,(1,1) the (1, 1)-linearization of Q1. �is is de�nitely an element of G/H1
±(K). So, we get

that the operator P 1 exists. �

4We do not write out how you can get all the operators of the Jordan-Kantor pair, but you can clearly derive them.

71



4 �e universal representation

4.4 Hermitian structurable algebras

Consider an associative algebra A with involution a 7→ ā, a right A-module M and a hermitian
form h : M ×M −→ A. We de�ne B = A ⊕M , the hermitian structurable algebra, with
multiplication

(a,m1)(b,m2) = (ab+ h(m2,m1),m2a+m1b̄),

and involution
(a, v) = (ā, v).

As was the case for associative structurable algebras, we will, at least if 1/2 /∈ Φ, not be able to give
an exhaustive description. If we speak about such algebras, we suppose that there is a quadratic
form f , as it was the case for associative algebras, which polarizes to xȳ − ψ(x, y) for a bilinear
form ψ : B ×B −→ S with S the image of x 7→ x− x̄.

Example 4.4.1. (Hermitian structurable algebras 1/2 ∈ Φ) We construct sequence pairs related
to a speci�c subclass of hermitian structurable algebras over Z[1/2] such that every Hermitian
structurable algebra is a quotient of one. We consider a free unital associative algebra A with three
sets of generators, namely

Hgen, Sgen, {h(i, j)|i, j ∈ I}

for some indexing set I . �ere is a unique involution on A de�ned as the identity on H , −Id on
S and maps h(i, j) 7→ h(j, i). Note that each associative algebra with involution, if 1/2 ∈ Φ, is
a quotient of such an algebra (even without the generators h(i, j)). We also consider a free right
A-moduleM with basis (mi)i∈I . �ere is a unique hermitian form h such that h(mi,mj) = h(i, j),
which is the hermitian form we will consider.

Now, we consider B = A⊕M with earlier speci�ed multiplication, this falls under the hermitian
structurable algebras. Note that every hermitian structurable algebra over a ring Φ with 1/2 is a
quotient of such an algebra. So, the question is whether we can also de�ne the operators Q1, T,Q2

in this more general context. We will make use of the structure of what should be the TKK Lie
algebra. Speci�cally, we use that structure to determine the operators, and then we will argue (using
B⊗Q) why this gives us the structure of a sequence pair. Since we have assumed that 1/2 ∈ Φ we
do not need to bother withQ1, as we know that it should beQ1

x′(y
′) = Vx′,y′x/2+zy ∈ G/H1(K)

with x′ = (x, z) ∈ (B × S)⊗K and y′ = (y, w). We also know that T is uniquely determined if
1/3 ∈ Φ, using x′3 = x′1x

′
2 − x′1

3/3 and that Tx′(y′) = x′3 · y in the TKK representation. We will
prove that x′1

3 ·y = x3 ·y is divisible by 3 over Z[1/2], which is a domain, so that the corresponding
formula is unique.

One can compute x3 · y = [Vx′,y′x, x] in the TKK representation, or at least what it should be. So,
set x = (a, u) and y = (b, v). We get

Vx′,y′x = 2(xȳ)x− (xx̄)y,

and
[Vx′,y′x, x] = 2((xȳ)x)x̄− ((xx̄)y)x̄− 2x(x̄(yx̄)) + x(ȳ(xx̄)).
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4 �e universal representation

We compute these terms one by one. First, we compute

((xȳ)x)x̄ =((ab̄+ h(v, u), va+ ub)x)x̄

=(ab̄a+ h(v, u)a+ h(u, v)a+ h(u, u)b, uab̄+ uh(v, u) + vaā+ ubā)x̄

=(ab̄aā+ h(v, u)aā+ h(u, v)aā+ h(u, u)bā

+ h(u, u)ab̄+ h(u, u)h(v, u) + h(u, v)aā+ h(u, u)bā

, uab̄a+ uh(v, u)a+ uh(u, v)a+ uh(u, u)b

+ uab̄a+ uh(v, u)a+ vaāa+ ubāa)

=(ab̄aā+ h(v, u)aā+ 2h(u, v)aā+ 2h(u, u)bā+ h(u, u)h(v, u) + h(u, u)ab̄, . . .),

where we dropped the last coordinate, as this will, necessarily, be zero in

2((xȳ)x)x̄+ x(ȳ(xx̄))− 2((xȳ)x)x̄+ x(ȳ(xx̄)),

which is what we are computing.

We calculate the value of

x(ȳ(xx̄)) =x(ȳ(aā+ h(u, u), 2ua))

=x(b̄aā+ b̄h(u, u) + 2āh(u, v), 2uab̄+ vaā+ vh(u, u))

=(ab̄aā+ ab̄h(u, u) + 2aāh(u, v) + 2bāh(u, u) + aāh(v, u) + h(u, u)h(v, u)

, 2uab̄a+ vaāa+ vh(u, u)a+ uaāb+ uh(u, u)b+ 2uh(v, u)a)

=(ab̄aā+ ab̄h(u, u) + 2aāh(u, v) + 2bāh(u, u) + aāh(v, u) + h(u, u)h(v, u), . . .).

We combine those to compute 2((xȳ)x)x̄+ x(ȳ(xx̄)). �is yields

2((xȳ)x)x̄+ x(ȳ(xx̄)) =(3ab̄aā+ 3h(u, u)h(v, u)

+ 4h(u, v)aā+ aāh(v, u) + 4h(u, u)bā+ bāh(u, u)

+ 2 · (h(u, u)ab̄+ bāh(u, u) + aāh(u, v) + h(v, u)aā), . . .),

where we grouped the terms so that all terms t are either already 3 times a term t′, part of 4t′ + t̄′

or part of 2(t′ + t̄′). As such, we obtain that

x3 · y =3(ab̄aā− aāab̄+ h(u, u)h(v, u)− h(u, v)h(u, u)

+ h(u, v)aā− aāh(u, v) + h(u, u)bā− ab̄h(u, u), 0).

�erefore, we know that T is well de�ned over Z[1/2], as Tx′(y′) = [x,Q1
x′(y

′)] − x3 · y/3. �e
map Q2 can easily be de�ned by se�ing

Q2
x′ [u, v] = −Vx′,v · Tx′(u) + Vx′,u · Tx′(v) + [Q1

x′(u), Q1
x′(v)].

If we see Q as a Z[1/2] algebra, then for B ⊗ Q we know that the result of this construction is
a (weak) Kantor-like sequence pair. �us, over Q it is a Kantor-like sequence pair. But we know
that all operators involved map the result of this construction, seen as a substructure, to itself, from
which we conclude that the construction applied to B also induces a (weak) Kantor-like sequence
pair. We can avoid the weakness assumption by making use of 1/2. Speci�cally, we know that for
B ⊗ Q, there exists an operator Q. It is su�cient to see that Q maps the Z[1/2]-substructure to
itself. �is is implied, where y = (y1, s) and x = (x1, t), by

[4, 2] = ad(4)
x (y2)− [1, 1][3, 1] = Q2

x(s) +Q1
x(y)2

1/2−1/2[[1, 1], [3, 1]] ∈ Qx(y)2
1/2 +H1(Z[1/2]).
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4 �e universal representation

Example 4.4.2. Without the assumption 1/2 ∈ Φ it is not that easy. A subclass for which it is
possible, are the hermitian structurable algebras A ⊕M such that A has a quadratic form which
permits us to construct a special sequence pair from A ⊕ S. Additionally, we need a quadratic
form M −→ A creating a hermitian special sequence pair. �en we consider the quadratic form
f(a,m) = (f(a) + f(m),ma) on the hermitian structurable algebra. �is allows us to de�ne

Q1
((a,m),s)(y) = (f(a,m) + s)y + ((a,m)y)(a,m) ∈ G/H1(Φ).

As in the previous example, we can construct T,Q2 from Q1. �is gives the structure of a weak
sequence pair. It is a bit harder to see whether it is a sequence pair.

74



5 �e exponential property

In this chapter, we generalize Faulkners [Fau00] approach to prove that the Hopf algebra H asso-
ciated to a Jordan pair (V+, V−), with V +, V − free Φ-modules, has as primitive elements

V− ⊕ P(H)⊕ V+.

Speci�cally, we generalize this to Jordan-Kantor-like sequence pairs over �elds of characteristic
di�erent from 2 and 3. Even though the most important results of this chapter are for such �elds,
we will also prove some important theorems for general commutative unital rings, or such rings
with 1/6. Moreover, all results hold, in fact, if the sequence groups are formed out of free Φ-modules
with 1/6 ∈ Φ. Before section 5.3 we will work over commutative unital rings, while we will work
over �elds in that section.

5.1 A unique associative factorization

First, we recall some elements of the �rst section of [AF99].

De�nition 5.1.1. Suppose A is an associative algebra over Φ with idempotents e and f . We call
x ∈ eAf (e, f)-invertible if there exists an y ∈ fAe such that xy = e and yx = f , i.e. if x is
invertible in the Jordan pair (eAf, fAe) (with multiplication Qx(y) = xyx) with inverse y.

We can generalize this to more idempotents. If e =
∑n

i=1 ei for pairwise orthogonal idempotents
ei and f =

∑m
j=1 fj for pairwise orthogonal idempotents fj , then we can write x ∈ eAf as∑

eixfj . For n = m and x ∈ eAf with eixfj = 0 for i 6= j, we call x (E,F )-diagonal (with
E = (e1, . . . , en), F = (f1, . . . , fm)). We denote the set of (E,F )-diagonal elements as DE,F .
Moreover, we use UE to denote the set of elements which are sums e +

∑
i<j eixej . �is can be

interpreted as the set of upper triangular matrices with 1 on the diagonal.

Lemma 5.1.2. Using the notation of the previous de�nition: UEop ×DE,F ×UF −→ UEopDE,FUF
is a bijection.

Proof. �is is [AF99, Lemma 1]. �

Proposition 5.1.3. Suppose that H is a cocommutative 2-primitive Z-graded Hopf algebra over Φ
generated by the elements of positive and negative homogeneous divided power series and 1. If x,
respectively y, is a positive, resp. negative, homogeneous dps in H , then there exist dps’es h, u, v ∈
H[[s, t]] such that hi is 0-graded for each i, u is a positive homogeneous dps and v is a negative
homogeneous dps, so that

exp(h) = exp(v) exp(sx) exp(ty) exp(u).

Suppose that L is the Lie algebra of primitive elements of H . If the action x 7→ Ax|L of H on L is
faithful, or if 1/2 ∈ Φ, then u, v, h are unique.
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5 �e exponential property

Proof. Before we start, we note that Ax(L) ⊂ L. Speci�cally, we know for positive and negative
homogeneous divided power series that

∆(Axn(c)) =
∑
k

∑
i+j=n

Axi(c
′
k)⊗Axj (c′′k),

with ∆(c) =
∑

k c
′
k ⊗ c′′k. �is is basically a more general formulation of Lemma (2.4.18). In

particular, for primitive elements c, we obtain

∆(Axn(c)) = Axn(c)⊗ 1 + 1⊗Axn(c),

using Axn(1) = η(ε(xn)) = δn0. We also know that A1 = Id. Hence Ax(L) ⊂ L for all x ∈ H .

We �rst prove the unicity if there exists a faithful representation. Note that if 1/2 ∈ Φ, then we
can add a grading element to L and the representation would be faithful. �e fact that we can add
such a grading element is a consequence of Lemma (4.2.11). Note that there are natural orthogonal
idempotents in the endomorphism algebra of L, namely the projection operators ei : L → Li
onto the graded components, this system of idempotents will be denoted with E. We want to
apply Lemma (5.1.2), to prove the uniqueness of v, u and h. Note that h ∈ DE,E since it is 0-
graded. Moreover, u is a positive homogeneous dps, and as such, it is an element of UE , while
v is an element of UEop . �erefore, it is su�cient to prove that exp(sx) exp(ty) is an element of
UEopDE,EUE .

We accomplish this by proving the �rst part of the theorem. Namely, we prove that

exp(h) = exp(v) exp(sx) exp(ty) exp(u),

has a solution with h 0-graded, v a negative homogeneous dps and u a positive homogeneous dps.
Corollary (2.4.19) almost literally proves this, if we use the elements of the form (a, b), [a, b] de�ned
from these divided power series, we see that

exp(ty)exp(sx)−1
=
∑
i,j

sitj(i, j) =
∏

exp(sitj [i, j]),

where we stress the fact that the order of the product is increasing on fractions i/j. Consequently,
the corollary says that

exp(sx) exp(ty) exp(sx−1) = exp(v−1) exp(st[1, 1]) exp(u−1) exp(sx−1)

for some v, u which are a negative and positive homogeneous dps. �

Note that we have determined the explicit form of u, v and h in terms of the elements [a, b]. So, this
u and v are de�ned for all sequence pair representations. So, the question remains whether, for a
sequence pair representation, the elements u and v are in the image of the sequence groups.

Now, we can generalize the exponential property introduced by Faulkner [Fau00, Section 6].

De�nition 5.1.4. LetG be a sequence pair over Φ. Letx ∈ G+(Φ) and y ∈ G−(Φ). Now, we de�ne
elements u, v ∈ G(Φ[[s, t]]) for a sequence pair representation ρ : G −→ A. Let Vσ be the set of
coprime (a, b) for which there exists an x(a, b) ∈ Gσ(Φ) (we wrote x(a, b) to stress the dependence
on a and b) such that xn(a, b) = [na, nb]. We de�ne V ′σ as the similar set with elements such
that x′2n(a, b) = [na, nb]. Set u = (sx)

∏
(a,b)∈V+ s

atbx(a, b)
∏

(a,b)∈V ′+
s2at2bx′(a, b) in increasing

order on a/b. We de�ne v as the similar element contained in G−(Φ[[s, t]]).
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5 �e exponential property

If ∑
hpqs

ptq = h = exp(v)−1 exp(sx) exp(ty) exp(u)−1,

satis�es hpq = 0 if p 6= q, then we say that ρ has the exponential property, which we will shortly
denote as E. If it only satis�es hpq = 0 for p 6= q when min(p, q) ≤ N then we say that it satis�es
the restricted exponential property 1 EN .

Remark 5.1.5. Note that the exponential property is equivalent with requiring that all exp[a, b]
with a 6= b are contained in a group G±(Φ). �e restricted exponential property is a bit harder to
gauge. Intuitively it should say that all exp[a, b] with a or b low enough should be contained in
the groups. However, this does not correspond to the technical de�nition, since the �rst k terms of
exp[a, b] could be zero while the k+ 1-th term is non-zero and as such even for low a, b we do not
know whether exp[a, b] is contained in G±(Φ) if the restricted exponential property holds.

To avoid the related problems, we will slightly adjust the exponential property later. �is is achieved
through �xing sensible u and v for (Jordan-Kantor-like) sequence pairs and all representations. �e
restricted exponential property will behave be�er.

Corollary 5.1.6. SupposeH is a cocommutative 2-primitive Z-graded Hopf algebra over Φ generated
by the elements of positive and negative homogeneous dps’es. �e sequence pair associated toH satis�es
the exponential property.

Proof. �is is true by de�nition. �

5.2 �e TKK representation satis�es the exponential property

We assume that 1/6 ∈ Φ. Before we can prove that the TKK representation satis�es the exponential
property, we need to carry out some preliminary investigations. We assume that the sequence group
representations are in standard form.

De�nition 5.2.1. Note that B =
∑

(st)i[i, i] for x ∈ G±(Φ) and y ∈ G∓(Φ) is well de�ned,
even if the TKK representation does not satisfy the exponential property. We call the action of B
on the groups G+ and G−, by making B, as an element of the endomorphism algebra of the TKK
Lie algebra, act on the Lie algebra, the Generalized Bergman operator. �e operator associated
with this action will be denoted as Bsx,ty , we will drop sx, ty whenever they are obvious from
the context. We call the u and v of the de�nition of the exponential property, the right and le�
quasi-inverse, if they exist in the sequence groups and satisfy

B = exp(v)−1 exp(sx) exp(ty) exp(u)−1.

Remark 5.2.2. It is possible to de�ne the Generalized Bergman operator broader than here, where
we de�ned it using formal power series. Nonetheless, the used de�nition achieves what we need
to achieve. �e names ’generalized Bergman operator’ and ’right and le� quasi-inverse’ are chosen
to re�ect the fact that we used the equivalency of �eorem (1.7.9) to de�ne these notions. It is
remarkable that we know for Jordan pairs that [n, n] = 0 for n ≥ 3. Speci�cally, B(sx, ty) =
1 + st[1, 1] + s2t2[2, 2] + . . . should act as the usual bergman operator 1 + stDx,y + s2t2QxQy .

1�is is not an easy de�nition to work with, but it has the now needed �exibility. Speci�cally, the fact that u and v
depend on the representation is something which, if possible, should be avoided. A�er the investigations of the next
section, we will be able to formulate (if 1/2 ∈ Φ) a slightly di�erent version of the exponential property for which
the restricted exponential property is be�er suited for inductive arguments.
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5 �e exponential property

In the following lemma, we do not really display all the computations, but merely give a recipe to
determine what the ideal form of u and v should be. As these forms are much too complicated to
determine explicitly, we will not really use these explicit forms.

Lemma 5.2.3. Let u, v, for x = (x1, x2) and y = (y1, y2), be as in the previous de�nition and
suppose that u = (u1, u2) and v = (v1, v2) are elements of G+(Φ[[s, t]]) and G−(Φ[[s, t]]), then u
must satisfy

−2B(u2) = −2s2x2 + s3tTx(y)2 + 2s4t2Qx(0, y2)2

and
−B(u1 + 2u2) = (ad v1 − 1)2B(u2)− sx1 + s2tQx(y)1 + 2s3t2Px(0, y2)1,

where Px(y) denotes the additional Jordan-Kantor-like sequence pair operator. Since B is invertible, a
solution to the previous equations exists. Moreover, the quasi-inverses are necessarily unique.

Proof. From exp(h) exp(u)(ζ) = exp(v)−1 exp(sx) exp(ty)(ζ), with ζ the grading element, one
gets right away that the equalities of the lemma are necessary. Moreover, since we are working
with formal power series and since B = 1 + O(st), we conclude that B is invertible with B−1 =
1 + O(st). Additionally, since we are working with formal power series we can compute u1, v1

recursively by se�ing them to be (u1)0 = 0 and (u1)1 = B−1(sx1 − s2tQx(y)− 2s3t2Px(0, y2)1)
(analogous expressions for v) �rst and then iteratively computing what they should be. Speci�cally,
one uses the following formula

(u1)n = (u1)n−1 +B−1(ad ((v1)n−1 − (v1)n)2B(u2)),

and a similar formula for v (which depends on un−2 and un−1). By computing v2, u2, v3, u3, . . .we
get two sequences. �ese sequences converge since the degree in s and t of what needs to be added
will increase in every step. Lemma (5.1.2) applied to the projection idempotents ei : L −→ Li,
shows that they are necessarily unique. �

Lemma 5.2.4. �e le� and right quasi-inverse exist, and have the form of Lemma (5.2.3)

Proof. We only need to prove existence, since the form of Lemma (5.2.3) is necessary. Lemma (2.4.13)
shows us that the Lie-exponentials which have a compatibility with the grading are always of the
form exp(ad x). As such, it is su�cient to show that u and v are such Lie-exponentials.

We know that exp(ty)exp(sx)−1
=
∑
sitj(i, j) =

∏
exp satb[a, b], with the product increasing on

a/b ∈ Q with a, b coprime. As such, if the product of all exponentials exp satb[a, b] with a > b
exists, then it is, necessarily u · (sx)−1. Similarly, the similar product with a < b is v. Since all the
exponentials exp[a, b] with a 6= b are actual exponentials, we know that u is given as

exp(u) =
∏

exp(sitj [i, j]) · exp(sx)

where the product is over all the coprime i > j. As such u and v are Lie-exponentials, where the
parts Ui such that u = 1 + U1 + U2 + . . . can be de�ned from the parts of the product of these
exponentials where the power of t is i lower than the power of s. Similar concerns show that v is
the le� quasi-inverse. �

Corollary 5.2.5. �e TKK representatation satis�es the exponential property

Remark 5.2.6. We could now reformulate, at least if 1/2 ∈ Φ, the exponential property using
�xed u and v instead of the variable ones of de�nition (5.1.4). We refer to this property as the �xed
exponential property and to its restricted variant as the �xed restricted exponential property.
Speci�cally, one uses∑

h′pqs
ptq = h′ = exp(v)−1 exp(sx) exp(ty) exp(u)−1,
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5 �e exponential property

instead of h in the usual de�nition of these properties, with u, v as determined in this section.

�e �xed and usual exponential properties are equivalent. �e useful change is that the �xed re-
stricted exponential property is be�er suited than the usual restricted exponential property for
induction arguments.

5.3 �e universal representation is 2-primitive

In this section, we replicate the arguments of Faulkner [Fau00, Section 6]. Despite some small
changes to match the broader context we work in, these arguments remain mostly the same. We
will be utilizing the theory developed in the previous sections. So, we assume that we are working
with a sequence pair G over a �eld Φ of characteristic di�erent from 2 and 3. By Corollary (4.3.5),
we know that G has a de�ning Jordan-Kantor-like sequence pair representation. So, G has a TKK
representation.

Suppose that we have a sequence pair representation ofG inA. We de�ne the following subalgebras
of A: X = 〈xi|x ∈ G+(Φ)〉, Y = 〈yi|y ∈ G−(Φ)〉. Soon, we will de�ne a third subalgebra H. We
will prove that H = YHX , when H is the universal representation. Additionally, we will prove
thatH satis�es the (�xed) exponential property. We will use h, throughout this section, to denote∑

hpqs
ptq = h = exp(v)−1 exp(sx) exp(ty) exp(u)−1,

for the �xed u and v as indicated in Remark (5.2.6). We will write h(x, y) if we want to stress the
dependence on x and y. With this h, we de�neH as the subalgebra ofH generated by the hpp(x, y)
for all p ∈ N, x ∈ G±(Φ), y ∈ G∓(Φ).

We will indicate which lemma (or theorem) of [Fau00] the following lemmas generalize.

Lemma 5.3.1 (Lemma 17). �e �xed restricted exponential property E0 holds for all sequence pair
representations. Moreover, h00(x, y) = 1 holds, for all x ∈ G±(Φ), y ∈ G∓(Φ).

Proof. �e moreover part is trivial. Notice that in exp(sx) exp(ty) the 0-degree terms in t form
exp(sx). We note that the 0-degree part in t of u is exp(sx) and the 0-degree part in t of v is 1, so
that the 0-degree part in t of exp(v−1) exp(sx) exp(ty) exp(u−1) is 1. �e argument applies using
the 0-degree part in s. So, hab with ab = 0 is either 1 if a = 0 = b or 0 if a 6= 0 or b 6= 0. �

Lemma 5.3.2 (Lemma 18). LetU be the universal sequence pair representation. For �xedx ∈ Gσ(Φ)
and y ∈ G−σ(Φ), the element h is group like. Moreover, if only the �xed restricted exponential property
EN holds, then hij , for i 6= j with min(i, j) ≤ N + 1, is primitive. Furthermore, if E holds, then H
is a Hopf subalgebra of U .

Proof. Since h is a product of exponentials of positive/negative homogeneous divided power series,
which are all group like, it must be group like. We get

∆(h) = h⊗ h.

If we now compare the terms which belong to a �xed coe�cient sitj , with min(i, j) ≤ N + 1, then
we get

∆(hij) =
∑
a+b=i
c+d=j

hac ⊗ hbd,

Assume now that the �xed restricted exponential property EN holds. So, the only terms which are
non zero in the sum are the ones with abcd = 0 or a = c and b = d. If we show that hab, with

79



5 �e exponential property

ab = 0 equals 1 if a = b = 0 and 0 otherwise, then we will have shown that hij is primitive if
i 6= j. �is is exactly Lemma (5.3.1). Furthermore, if i = j, then we get by the same observations
that (1, h11, h22, . . . , hNN ) forms a (�nite) divided power series. So, if E holds, then the hii form
an in�nite power series. �

We now de�ne some functions on the monomials for general sequence pair representations. For a
monomial m =

∏k
i=1 (ui)ni with ui ∈ G±(Φ) and ni ∈ N and variable, but �nite, k, we de�ne the

σ-degree as
degσm =

∑
ui∈Gσ

ni.

Additionally, we de�ne the level of m by

λ(m) =
∑

(i,j)∈L

ninj ,

where
L = {(i, j) : i < j, σi = +, σj = −},

where σi = + if x ∈ G+(Φ) and σi = − if x ∈ G−(Φ).

Something useful to note is, if f(m2) ≤ f(m2)′ for f = deg± and λ, then

λ(m1m2m3) ≤ λ(m1m
′
2m3), (5.1)

holds, for all m1,m3, since λ(m1m2) = λ(m1) + λ(m2) + deg+(m1) deg−(m2) holds for all
m1,m2.

De�nition 5.3.3. Let Mab(c) be the set of monomials m with deg+(m) ≤ a,deg−(m) ≤
b, λ(m) ≤ c.

Lemma 5.3.4 (Lemma 19). If ρ is a sequence pair representation of G, then

hpq(x, y) ≡ xpyq mod Mpq(pq − 1).

Proof. Note that it is su�cient to prove that xpyq is the only term in hpq with level pq or greater,
since the degrees of contributing monomials are already low enough, as deg+ should equal the
degree of s and deg− the degree of t. Moreover, each term vixaybuj in

h = exp(v)−1 exp(sx) exp(ty) exp(u)−1

with viuj 6= 1 will have, by de�nition, lower level. Hence, we are done. �

Lemma 5.3.5 (Lemma 20). If ρ is a sequence pair representation of G, then, for x, z ∈ G+(Φ),
y, w ∈ G−(Φ), the following elements are inMpq(pq − 1)

1. xpyq if p ≥ 2q or 2p ≤ q,

2. xazbyq if a+ b = p ≥ 2q,

3. xpyawb if 2p ≤ a+ b.
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Proof. We see that the �rst kind of elements will be contained inMpq(pq−1), as a consequence of
the fact that the elements of the second or the third kind are contained inMpq(pq− 1). Note that,
for each u ∈ G+(Φ) and v ∈ G−(Φ), by the de�nition of a sequence pair, each (a, b) with a ≥ 2b
lies inMab(ab− 1).

As such, it is su�cient to see the second and third expression as linearizations of such (a, b). Note
that in (a, b)x·λz,y (where we stress the dependence of (a, b) on x·λz and y) the only terms which are
not necessarily part ofMab(ab−1) are

∑
i+j=n λ

jxizjyb. Since the whole should be inMab(ab−1)
and since we can compare terms belonging to di�erent powers of λwe have proved that the second
kind of elements is contained inMpq(pq − 1)).

Similar considerations can prove the same for the third element, by making use of elements (a, b)
with the role of + and − interchanged. �

We need the following fact about binomial coe�cients.

Lemma 5.3.6. If d = gcd{
(
n
i

)
|0 < i < n}, then

d =

{
p n = pe, p prime
1 otherwise

.

Proof. �is is exactly [Fau00, Lemma 21]. We also include the proof for completeness. Clearly, d
divides n. Suppose p | d is a prime. Write n = pem with p - m. In Zp[t] we have

1 + tn = (1 + t)n = (1 + tp
e
)m = 1 +mtn + . . .

So, p | m if m 6= 1, which is a contradiction. So, suppose now that d = pf and n = pe. If f > 1,
then is

(1 + a)n ≡ 1 + an mod p2,

So, an ≡ a mod p2 by induction on a, as 1n = (1+0)n ≡ 1+0n = 1. However, pn ≡ 0 mod p2,
but p is not. So, f = 1. �

Lemma 5.3.7 (Lemma 22). Suppose that the �xed restricted exponential property EN holds for
a sequence pair representation ρ of G. Consider x ∈ G±(Φ) and y ∈ G±(Φ). Take p 6= q with
min(p, q) ≤ N + 1, then xpyq ∈Mpq(pq − 1).

Proof. Suppose, �rst, that min(p, q) ≤ N . Now, consider that

exp(sx) exp(ty) = exp(v)h exp(u).

�is implies xpyq =
∑
vihkkuj where vi and uj are terms depending only on u and v and degrees

in s and t. Lemma (5.3.4) shows that hkk ∈ Mkk(k
2) ⊂ Mk2(pq − 1), as k2 ≤ min(p, q)2 < pq

indicates. So, if vi, uj 6= 0 we see that vihkkuj ∈Mpq(k
2) ⊂Mpq(pq − 1). �erefore, we see that

xpyq ∈Mpq(pq − 1).

Now, we prove the lemma for p, q such that min(p, q) = N + 1. Since we assume that 1/2 ∈ Φ, we
can easily compute x ·λx for x an element of a sequence Φ-groupG. Namely, there is a unique way
to write x = ah with (−a)a = 1 and h ∈ H1(Φ). So, x · λx = (1 + λ)a · h′ with h′ = (1 + λ2)h,
where we used the module structure of H1 instead of the usual scalar multiplication on the group.
Assume without loss of generality that p = N + 1. We see that

((1 + λ) · x)pyq =
∑

i+2j=p

(1 + λ)iai(1 + λ2)jh2jyq.
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5 �e exponential property

Hence we see that this equals, with peven = 1 if p is even and 0 otherwise,

(1 + λ)papyq + peven(1 + λ2)(p/2)hpyq mod Mpq(pq − 1),

since hiyq for i < p is contained, by the �rst part, inMiq(iq − 1). We see that the term belonging
to λi, i 6= 0, p, in (1 + λ)papyq is

(
p
i

)
apyq , this should, on the other hand, equal to ap−iaiyq ∈

Mpq(pq− 1), as a · λa = (1 + λ) · a. So, we see that
(
p
i

)
apyq ∈Mpq(pq− 1) for all i 6= 0, p. If p is

even, we can do exactly the same for hpyq to get that
(
p/2
i

)
hpyq ∈Mpq(pq−1) for all 0 < i < p/2.

Now, we do nearly the same thing with y to get a di�erent set of binomial coe�cients, so that we
can assume that the greatest common divisor of all these coe�cients is not a power of a prime
bigger than 3.

We can assume that q < 2p, by Lemma (5.3.5). We know that i + j = q implies that either i < p
or j < p. So, of i and j at least one is smaller than or equal to N . We can do nearly same thing
as we did before, to prove that

(
q
l

)
apyq ∈ Mpq(pq − 1). We write y = bg, so that (−b)b = 1 and

g ∈ H1
−(Φ). Since bg = gb and since we are working with a sequence Φ-group representation, we

know that [bi, gj ] = 0 for all i and j, by comparing the coe�cients of λ in [λ · g, b]i+j = 0. As such
we can guarantee in terms apbigj that i ≤ N or we replace it with the term apgjbi with j ≤ N .
We conclude that

ap((1 + µ)y)q = ap(1 + µ)qbq + qeven(1 + µ2)q/2apgq mod Mpq(pq − 1).

So, by comparing terms belonging to µ we get
(
q
l

)
apbq ∈ Mpq(pq − 1) for all 0 < l < q. We can

do the same for g to get that all
(
q/2
i

)
for 0 < i < q/2 are part ofMpq(pq − 1).

�us, we know that

xpyq = apbq + pevenhpbq + qevenapgq + pevenqevenhpgq mod Mpq(pq − 1)

and that all Z−multiples with coe�cients
(
p
i

)
,
(
q
j

)
(or
(
p,q/2
i

)
for terms with h and g instead of a

and b) for i 6= p, 0, j 6= q, 0 of these four terms of the right hand side are contained inMpq(pq−1).
If we can show that the greatest common divisor of all those binomial coe�cients is a power of 1, 2
or 3 then we know that the terms without the binomial coe�cients are contained inMpq(pq − 1).
�is is the case since we assumed that p < 2q and 2p > q. Speci�cally, in all cases of binomial
coe�cients

(
a
i

)
,
(
b
j

)
, we know that a < 4b and b < 4a. As such, if a and b are powers of the same

prime, they can only be powers of 2 and 3. �ese primes are assumed to be invertible. �

Remark 5.3.8. �is is the only lemma in this section where we use the fact that we can divide by 3
(modulo the fact that we use that the TKK representation satis�es the exponential property). �is
can easily be remedied by considering Jordan-Kantor-like sequence pair representations instead of
just sequence pair representations. First we need to generalize Lemma (5.3.5) so that it includes
xphq ∈M(pq− 1) if h ∈ H1

−(Φ) and 2p > 3q and h′pyq ∈M(pq− 1) if h ∈ H1
+(Φ) and 3p < 2q.

�is lets us use a be�er bound on the greatest common divisor of the multiples of a term belonging
inMpq(pq−1), so that 3 cannot be that divisor. Notwithstanding the previous observations, we do
not consider characteristic 3 in this section, as we do not know whether the exponential property
holds for the TKK representation.

Lemma 5.3.9 (Lemma 23). If a sequence pair representation ρ of G satis�es the �xed exponential
property, then

〈X ,Y〉 = YHX .

If it satis�es the �xed restricted exponential property EN , then, for r, s with min(r, s) ≤ N + 1,
x ∈ G+(Φ), y ∈ G−(Φ), we have that hrs ∈ YHX .
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Proof. We show by induction on n that if EN holds and min(r, s) ≤ N + 1, then

Mrs(n) ⊂ YHX .

Clearly,Mrs(0) is a subset of YX . So, letm ∈Mrs(n) be a monomial such thatm /∈Mrs(n−1).
If m factors as m1xpyqm3 with pq 6= 0, x ∈ G+(Φ), y ∈ G−(Φ), then Lemma (5.3.7) shows
that p should equal q. Moreover, m cannot factor as m1xp1zp2yqm3, with x and y as before and
z ∈ G+(Φ) with p1p2q 6= 0, Speci�cally, we know that p2 = q by the previous observation. If we
use equation (2.1) and the fact that H1

σ(Φ)i commutes with all Gσ(Φ)j to rewrite

xp1zp2 =
∑

a+c=p1
b+c=p2

zbxa[x, z]2c =
∑

a+c=p1
b+c=p2

[x, z]2czbxa,

then we get that the only terms such that

[x, z]2czbxayq = zbxa[x, z]2cyq /∈M(p1+p2)q((p1 + p2)q − 1)

are the ones with a = q, 0 and 2c = q, 0. �us, p1 ≥ q and p1 + p2 ≥ 2q hold, which implies, using
Lemma (5.3.5), that these terms are contained inM(p1+p2)q((p1 + p2)q − 1). Analogously one can
show that factorizations of the form xpyq1wq2 with w ∈ G−(Φ), are also impossible.

�erefore, we get m = m1
∏

((xi)pi(yi)pi)m3 with xi ∈ G+(Φ), yi ∈ G−(Φ), m1 ∈ Y and
m3 ∈ X . �is means, by Lemma (5.3.4), that

m ≡ m1(
∏

hpipi(xi, yi))m3 mod Mrs(n− 1),

where we wrote hpq(a, b) to stress the dependence of hpq on a and b. From the induction hypothesis,
we conclude m ∈ YHX . Hence, the �xed exponential property implies 〈X ,Y〉 = YHX .

Furthermore, Lemma (5.3.4) lets us conclude that hrs(x, y) ∈Mrs(rs) ⊂ YHX . �

Now, we take a well-ordered basis ui, for i ∈ I of G+(Φ), which corresponds to the vector space
G/H1

+(Φ)⊕H1
+(Φ). We assume that this basis has a partition as a basis of G/H1

+(Φ) and one of
H1

+(Φ) where we let ui, a basis vector for G/H1
+(Φ), correspond to the unique ui ∈ G+(Φ) with

(−ui)ui = 1. We assume that we have a similar basis vj , j ∈ J of G−(Φ). Let u∗i , v∗j be their dual
bases. In what comes, we shall denote with k a map I −→ N with only a �nite amount of x ∈ I
which have non zero image. We let this k correspond to

m+
k =

∏
g

(k(i))
i

∏
h

(2k(i))
i

with the order of multiplication that corresponds to the order of the basis, and where we wrote
g
k(i)
i instead of (gi)k(i) to represent the k(i)th term of the sequence gi. Additionally, we split the

product, according to being part of G/H1
+ (namely the g’s) and being part of H1 (namely the h’s).

We shall use l for similar functions J −→ N. In addition, for b ∈ Hwe de�nemkl(b) = m−l bm
+
k .

We recall for Jordan-Kantor-like sequence pairs, that there is the TKK representation in the endo-
morphism algebra of the Lie algebra H1

− ⊕G−/H1
− ⊕ InDer(G)⊕G+/H

1
+ ⊕H1

+. We extend the
maps u∗i , v∗j of the dual basis to the whole of the TKK Lie algebra.

We de�ne maps
λ+
i (a) = fiu

∗
i (S(a) · ζ),

with ζ the grading element of the TKK Lie algebra, and · corresponding to the action of the universal
representation on the TKK Lie algebra and fi = 1 for i corresponding to G/H1 and 1/2 for H1.
For the vi we set

λ−i (a) = fiv
∗
i (a · ζ).
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5 �e exponential property

Lemma 5.3.10 (Lemma 24). �e maps λ+
i satisfy

λ+
i (bx1) = ε(b)u∗i (x),

λ+
i (YH) = 0,

λ+
i (bh2) = ε(b)u∗i (h),

for x ∈ G+(Φ), h ∈ H1
+(Φ) and b ∈ Y .

Proof. First, we determine the action of elements inH on ζ . We note that B(x, y) = 1 + st[1, 1] +
s2t2[2, 2] + . . . acts as an automorphism of the TKK Lie algebra and that ε[i, i] = δi0. Moreover,
S(B(x, y)) = B(x, y)−1.

Now we are ready to compute the action of B(x, y) on ζ . We compute, using the fact that it acts as
an automorphism, that

B(x, y) · [ζ, u] = [B(x, y) · ζ,B(x, y) · u],

which implies that
(ad ζ)B(x,y) = ad (B(x, y) · ζ).

Notice that (ad ζ)B(x,y)(u) = σ(u)u, for u ∈ Lσ(u). As such, we can conclude thatB(x, y)(ζ) = ζ ,
as the equality between elements of InDer(G) is determined by their action on the rest of the Lie al-
gebra. Consider thatH is generated by the hii, and that h(x, y) = B(sx, ty) in the TKK representa-
tion. Moreover, h(x, y) is group-like. So, we get ε(h(x, y)) = 1 and S(h(x, y)) = h(x, y)−1. So, we
obtain that h(x, y) ·ζ = ε(h(x, y))ζ = S(h(x, y)) ·ζ . So, we conclude that u ·ζ = ε(u) ·ζ = S(u) ·ζ
for all u ∈ H, asH is generated by the hii.

�e �rst and third equation immediately follow from straightforward computation. We execute the
computation for the �rst equation (but for the third equation one just needs to substitute a 2 for
each 1), we compute

λ+
i (bx1) = u∗i ((x

−1
1 )S(b) · ζ)

= u∗i (−ad x1(ε(b)ζ))

= ε(b)u∗i (x),

where we needed that x−1
1 = −x1 for all x. �e second equation follows from the fact that

u∗i (G− ⊕ InDer(G)) = 0.

�is �nishes the proof. �

Remark 5.3.11. �ere are similar expressions for λ−i , but we will not prove them.

Now we will recursively construct some functions which will allow us to show that each element of
YHX can be wri�en, in a certain sense, in a unique way. Recall that k represents a function I −→ N
with �nite support. We can de�ne sums of such functions. Furthermore, set | k |=

∑
k(i), and let

s = s(k) be the minimal element of I with ks 6= 0. Additionally, we de�ne k̄ to be k− δi,s(k) where
δ represents the krönecker delta. We can do the same for functions l : J → N.

Note that for the bases ui, vi, we have

∆(u
(k(i))
i ) =

∑
k′+k′′=k(i)

u
(k′)
i ⊗ u(k′′)

i
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5 �e exponential property

As such, we get the following expression for monomials mk

∆(mk) =
∑
k′+k′′

mk′ ⊗mk′′ ,

where we now sum over functions k : I −→ N. �e most general form we need is

∆(mkl(b)) =
∑

mk′l′(b
′
t)⊗mk′′l′′(b

′′
t ),

where we sum over k′ + k′′ = k, l′ + l′′ = l and where

∆(b) =
∑
i

b′i ⊗ b′′i .

We recursively de�ne βpq : U −→ U , on the universal representation U , as

βpq =


Id if p = q = 0

(λ−s(q) ⊗ β0q̄) ◦∆ if p = 0, q 6= 0

(λ+
s(p) ⊗ βp̄q) ◦∆ if p 6= q

.

We recall and stress that p(i), for i related to H1, corresponds u2p(i)
i , instead of up(i)i . �is explains

why we do not need to di�erentiate in the de�nition of β between the basis elements.

Lemma 5.3.12 (Lemma 25). Let γ : G −→ U be the universal representation. If |k| ≤ |p| and
|l| ≤ |q|, then

βpq ◦mkl =

{
0 if (p, q) 6= (k, l)

Id if (p, q) = (k, l)
.

Proof. �e base case p = q = 0 is trivial. We prove that if p 6= 0 and if the lemma holds for all k
with |k| < |p|, then it holds for p as well. �e case p = 0 is analogous to what we will prove, so we
assume this to be proven.

Take b ∈ H. We have

βpq(mkl(b)) =
∑

λ+
s(p)(mk′l′(b

′
t))βp̄q(mk′′l′′(b

′′
t )), (5.2)

where we sum over k′ + k′′ = k, l′ + l′′ = l and ∆(b) =
∑

t b
′
t ⊗ b′′t . Clearly, k′ + k′′ = k implies

that |k′′| ≤ |k| ≤ |p|. If |k′′| = |p|, then k′ = 0 must hold, and

λ+
s(p)(mk′l′(b

′
t)) ∈ λ+

s(p)(YH) = 0.

We, thus, assume that |k′′| ≤ |p|−1 = |p̄|. So, we can apply the induction hypothesis, which yields

βp̄q(mk′′l′′(b
′′
t )) =

{
0 if (p̄, q) 6= (k′′, l′′)

b′′t if (p̄, q) = (k′′, l′′)
.

Moreover, if (p̄, q) = (k′′, l′′) holds, then |l| ≤ |q| implies that l = q and we obtain l′ = 0.
Furthermore, |k′| + |p̄| = |k| ≤ |p| holds, so we see that |k′| ≤ 1. �us, either k′ = 0 holds or we
know that k′ : i → δei for some e. In the �rst case, we get λ+

s(p)(m00(b′t)) = λ+
s(p)(b

′
t) = 0, while

we obtain in the second case that

λ+
s(p)(mk′l′(b

′
t)) = λ+

s(p)(b
′
tu

(1)
e ) = ε(b′t)u

∗
s(p)(ue).
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5 �e exponential property

Now, we see that all terms are 0 in equation (5.2) except those with p̄ = k′′, q = l = l′′ and e = s(p).
Moreover, if this holds, then k = p̄+ k′ = p. �us, βpq(mkl(b)) = 0 holds if (p, q) 6= (k, l). Lastly,
if (p, q) = (k, l), then we get

βpq(mpq(b)) =
∑
t

ε(b′t)b
′′
t

= (ε⊗ Id)(∆(b))

= b. �

Lemma 5.3.13 (Lemma 26). Let γ : G −→ U be the universal representation. Every a ∈ YHX
can be wri�en uniquely as

a =
∑

mkl(ckl), with ckl ∈ H.

Also, if a ∈ YHX is primitive, then a ∈ (H1
−)2 ⊕ (G−)1 ⊕ H ⊕ (G+)1 ⊕ (H1

+)2, where (G+)1

denotes the �rst coordinate of each sequence corresponding to g ∈ G+(Φ) (and the other expressions
have similar meanings).

Proof. Equation (2.2) shows that we can assume that each x ∈ X is a sum of products
∏
g

(ki)
i ,

weakly increasing on the i. Equation (2.1) shows that we can rewrite these to be products which
are strictly increasing on the i (using the fact that all hk for h ∈ H1

σ(Φ) commute with every gi for
g ∈ Gσ(Φ)). As such, each a is of the form

a =
∑

mkl(ckl),

for some ckl ∈ H. So, we want to show uniqueness. To do that, it is su�cient to prove that a = 0
implies that ckl = 0 for all k and l. We show both statements of the lemma at the same time; we
will show that the ckl are unique for primitive elements, including 0, in such a way that it clearly
shows that the possible primitive elements are the ones mentioned in the lemma.

We can suppose that each a and each of the terms mkl(ckl) contributing to a belong to the same
grading component Ud in the Z-grading on U . If there is some ckl 6= 0, choose p, q with cpq 6= 0
and |p| maximal. Hence, ckl 6= 0 indicates that |k| ≤ |p|. Furthermore, asH ⊂ U0, we obtain

d = |k| − |l| = |p| − |q|,

so |l| ≤ |q| must hold as well. Lemma (5.3.12) proves that cpq = βpq(a) holds. In particular, a = 0
implies that all ckl must be 0.

Now, we consider the three cases in the de�nition of βpq . If p = q = 0, then a = β00(a) = c00 ∈ H.
For the remaining two cases, we shall show that mpq(cpq) is a primitive element of the right form,
and use induction on the number of remaining terms in a−mpq(cpq). If p = 0, q 6= 0, then we get

c0q = β0q(a)

= (λ−s(q) ⊗ β0q̄)(a⊗ 1 + 1⊗ a)

= λ−s(q)(a)β0q̄(1)

=

{
0 if q̄ 6= 0

λ−s(q)(a) if q̄ = 0
,

where the second equality holds because of the grading. Since cpq 6= 0, we conclude that p =

0, q 6= 0 implies that q̄ = 0 and m0q(c0q) = λ−s(q)(a)v
(i)
s(q) with i = 1, 2 depending on whether s(q)

corresponds to a basis vector of G/H1
− or H1

−.

86



5 �e exponential property

Similarly, if p 6= 0, then we get

cpq = βpq(a)

= (λ+
s(p) ⊗ βp̄q)(a⊗ 1 + 1⊗ a)

= λ+
s(p)(a)βp̄q(1)

=

{
0 if (p̄, q) 6= (0, 0)

λ+
s(p)(a) if (p̄, q) = (0, 0)

.

So, we conclude that p̄ = 0 and mpq(cpq) = λ+
s(p)(a)u

(i)
s(p) ∈ (G+)1 ⊕ (H1

+)2. �

�eorem 5.3.14 (�eorem 27). Suppose that ρ : G −→ A is a sequence pair representation over Φ.
�is representation satis�es the �xed exponential property and 〈X ,Y〉 = YHX .

Proof. By Lemma (5.3.9), it su�ces to prove the �xed exponential property. We prove this prop-
erty for the universal representation. �erefrom, it follows for every sequence pair representation.
We show that the �xed exponential property holds, using induction. Namely, we show the �xed
restricted exponential property EN for each N ∈ N. We know that E0 holds by Lemma (5.3.1).

Suppose that EN holds and let p 6= q with min(p, q) ≤ N + 1. Consider x ∈ G+(Φ), y ∈ G−(Φ).
From Lemmas (5.3.9) and (5.3.2), it follows that hpq ∈ YHX and that it is a primitive element.
Lemma (5.3.13) lets us conclude that hpq ∈ (H1

±)2 ⊕ (G±)1.

We know that the TKK representation, which we see as a morphism ξ from the universal represen-
tation, satis�es the �xed exponential property since 1/6 ∈ Φ. So, ξ(hpq) = 0 is true. However, the
TKK representation is faithful. Hence, we conclude that hpq = 0 in the universal representation.
�is shows that EN+1 holds. �erefore, the universal representation satis�es the �xed exponential
property. �

Corollary 5.3.15 (Corollary 28). Let γ : G −→ U be the universal representation, then the primi-
tive elements are determined as

P(U) = (H1
−)2 ⊕ (G−)1 ⊕ P(H)⊕ (G+)1 ⊕ (H1

+)2,

where P(A) stands for the primitive elements of A. Moreover, each h ∈ U can be expressed uniquely
as a sum of monomials mpq(bk).

Corollary 5.3.16. Each sequence pair representation of G is a Jordan-Kantor-like sequence pair
representation.

Proof. By Corollary (5.3.15) we know what the primitives are of the universal representation. Uti-
lizing that, it is easy to see that the universal representation is a Jordan-Kantor-like sequence pair
representation. Hence, each sequence pair representation is a Jordan-Kantor-like sequence pair
representation. �

Remark 5.3.17. Notice how easily we can construct from the previous Hopf algebra U all other
ingredients in the construction. Firstly, we can recover from U the sequence pair. Secondly, we can
recover the Jordan-Kantor pair. Additionally, we can consider the subalgebra L̃ of P(U) generated
by (H1

−)2 ⊕ (G−)1 ⊕ (G+)1 ⊕ (H1
+)2, which coincides with the universal central extension of the

TKK Lie algebra L associated to the Jordan-Kantor pair. Note that L̃ equals P(U) except maybe on
the 0-graded part. Speci�cally, we can construct L from L̃ by taking the quotient with respect to
Ker(ad]), with

ad] : L̃ −→ EndΦ(L−2 ⊕ L−1 ⊕ L1 ⊕ L2),

by mapping l to the restriction of ad l.
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6 �e universal enveloping algebra

We assume, in this chapter, that Φ is a �eld of characteristic 0. We will show that for (Jordan-
Kantor-like) sequence pairs over Φ, the universal enveloping algebra of the TKK Lie algebra is
isomorphic to the universal representation. We could try to follow [Fau00] by explicitly checking
that the sequence pair representation in question is a sequence pair representation. However, this
would be quite challenging. It is easier to directly use the Hopf algebra structure of the enveloping
algebra and the fact that in characteristic 0 the primitive elements are exactly those elements that
correspond to elements of the underlying Lie algebra.

6.1 �e universal enveloping algebra

We introduce the universal enveloping algebra roughly following Hall [Hal15].

De�nition 6.1.1. Suppose that L is a Lie algebra and A is an associative algebra. We say that a
linear map φ : L −→ A is a representation if φ([x, y]) = φ(x)φ(y)− φ(y)φ(x).

De�nition 6.1.2. For a Lie algebra L, we de�ne the Tensor algebra T (L). �is algebra is de�ned
as

T (L) =
∞⊕
k=0

L⊗k.

�is is an associative unital algebra with multiplication de�ned by

(v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm) = (v1 ⊗ · · · vn ⊗ w1 ⊗ · · · ⊗ wm).

�ere is an inclusion i of L into T (L). Note that for each linear map

φ : L −→ A

into an associative unital algebra A, there exists a unique algebra morphism

ψ : T (L) −→ A

such that ψ(i(x)) = φ(x). To be speci�c, the map is determined by

ψ(x1 ⊗ · · · ⊗ xn) = φ(x1) · · ·φ(xn).

Now we try to �nd a minimal two-sided ideal I of T (L) such that for U = T (L)/I the inclusion
of L −→ U is actually a Lie algebra representation. We take the ideal I generated by x⊗ y − y ⊗
x − [x, y] for all x, y ∈ L. Note that, on the other hand, for each representation φ : L −→ A the
unique ψ : T (L) −→ A factors through U . So, we conclude that U is a representation satisfying
a certain universal property. Namely, for each representation φ : L −→ A there exists a unique
ψ : U −→ A such that φ = ψ ◦ i.

89



6 �e universal enveloping algebra

Remark 6.1.3. Note that if L is a graded Lie algebra, then U inherits that grading. Speci�cally, on
T (L) there is a natural grading, by se�ing La1 ⊗ . . .⊗ Lan to be (

∑n
i=1 ai)-graded. Note that the

ideal I is compatible with the grading.

De�nition 6.1.4. Let L be a Lie algebra. An algebra A with linear map i : L −→ A such that for
all representations φ : L −→ B there exists a unique ψ : A −→ B such that φ = ψ ◦ i is called the
universal enveloping algebra. �e ’the’ is justi�ed as this algebra is unique up to isomorphism.
Note that the previously constructed U is the universal enveloping algebra of the Lie algebra L.

We can endow U with a Hopf algebra structure. We de�ne some operators on T and check if these
make U into a Hopf algebra, by checking whether these operators make I a Hopf ideal. We de�ne
∆ : T (L) −→ T (L)⊗ T (L) by

∆(1) = 1⊗ 1

and
∆(i(x)) = i(x)⊗ 1 + 1⊗ i(x),

for x ∈ L, note that ∆(x1 ⊗ · · · ⊗ xn) = ∆(x1) · · ·∆(xn) yields the de�nition on the whole
of T (L). One easily checks1 that x ⊗ y − y ⊗ x − [x, y] is primitive. We conclude that ∆(I) ⊂
I ⊗ T (L) + T (L)⊗ I . Note that ∆ is coassociative. �e counit is easy to de�ne, namely ε(k) = k
for k ∈ L⊗0 and ε(i(x)) = 0 for x ∈ L. Since it acts as a counit on the generators i(x) and 1,
namely

(ε⊗ Id)∆(i(x)) = i(x) = (Id⊗ ε)∆(i(x)),

we see that it actually is a counit. Note that ε(I) = 0. �e antipode is, easily, de�ned by S(i(x)) =
−i(x) and

S(u⊗ · · · ⊗ v) = S(v)⊗ · · · ⊗ S(u),

as it needs to be an algebra anti-morphism. �at this is an antipode follows from the fact that

µ ◦ (Id⊗ S)∆(i(x)) = η(ε(i(x))) = 0 = µ ◦ (S ⊗ Id)∆(i(x)),

for generators i(x). So, we see that U is a Hopf algebra with ∆, ε, S induced by the ones de�ned
on T (L) as I is a Hopf ideal.

�eorem 6.1.5 (Poincarré-Birkho�-Witt). Suppose thatL is a �nite dimensional Lie algebra with
basis X1, . . . , Xk. �e elements of the form

i(X1)n1 . . . i(Xn)nn ,

with each ni a non-negative integer, span U and are linearly independent. In particular, i : L −→ U
is injective.

Proof. See [Hal15, �eorem 9.9]. �

Proposition 6.1.6. Let L be a �nite dimensional Lie algebra over Φ. �e primitive elements of U are,
exactly, the elements i(x), x ∈ L.

Proof. We note that
µ ◦∆(x) = 2x,

for primitivex. By the Poincarré-Birkho�-Wi� theorem, we know that we can write eachx uniquely
as ∑

n
λn

n∏
i=1

i(Xi)
ni ,

1�is is in some sense ”the same” computation that shows that [ad x, ad y] = ad [x, y].
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6 �e universal enveloping algebra

with n = (n1, . . . ,nn) and n the dimension of L. What we want to prove is that µ ◦∆(x) = 2x
implies that all n satisfy

|n| =
∑

ni = 1.

�is is the case, since

∆ ◦ µ(
n∏
i=1

i(Xi)
ni) = 2|n|

n∏
i=1

i(Xi)
ni ,

and since we are working in characteristic 0, so that 2p = 2 has only 1 solution, namely p = 1. �

Remark 6.1.7. One can even prove something stronger than the previous proposition. Milnor and
Moore ([MM65, �eorem (5.18)]) proved that for each Lie (super-)algebra the functors U (mapping
a Lie super-algebra to its universal enveloping algebra) and P (mapping a Hopf algebra to the Lie
algebra of its primitive elements) satisfyPU = Id andUP = Id, at least when we look at Lie (super-
)algebras and certain cocommutative Hopf algebras generated by the primitive elements over �elds
Φ with characteristic 0. What the exact Hopf algebras are, does not ma�er. What is interesting, is
that PU = Id on the Lie algebras over �elds with characteristic 0.

6.2 An isomorphism in characteristic 0

Consider a Jordan-Kantor pair P with TKK Lie algebra L (using the inner structure algebra with
grading element) and its universal central extension L̃. An exact description of L̃ has been given
by Benkart and Smirnov [BS03, Section 5] with a proof that a speci�c Lie algebra is the universal
central extension in [BS03, Corollary 5.23].
Lemma 6.2.1. If G is a (Jordan-Kantor-like) sequence pair over Φ, then the universal representation
of G is generated by the elements of the associated Jordan-Kantor pair.

Proof. Suppose that Gσ is in standard form. We prove that (a, 0)n = an1/(n!). We shall denote
(a, 0)n as an. We use equation (2.1) to get

aiaj =

(
i+ j

i

)
ai+j ,

for all i and j. Using induction, one proves that (n!)an = an1 . So, we get an = an1/(n!). �e same
is true for elements (0, b)n. Speci�cally, they can be rewri�en using (n!)(0, b)2n = (0, b)2, and
(0, b)2n+1 = 0. Hence, each (a, b)n is a polynomial in the σ, 2σ graded elements of the associated
Jordan-Kantor-like sequence pair. As the (a, b)n for (a, b) ∈ G±(Φ) and n ∈ N generate the
universal representation, we are �nished. �

�eorem 6.2.2. Let P be a Jordan-Kantor pair over Φ. �e universal representation of the sequence
pair associated to P is isomorphic to U(L̃).

Proof. We set U = U(L̃), namely the universal enveloping algebra of L̃. �is is a Z-graded co-
commutative Hopf algebra, as it inherits the grading of L̃. For elements (x1, x2) ∈ Lσ ⊕L2σ (with
L the TKK Lie algebra of P ), we consider the in�nite dps (1, x1, x

2
1/2 + x2, x

3
1/6 + x1x2/2, . . .).

Note that, as Proposition (6.1.6) and Remark (6.1.7) indicate, the algebra with those divided power
series satis�es the conditions of �eorem (2.4.23). Hence, we conclude that there is a sequence pair
representation in U .

Now, we use the corresponding morphism γ from the universal sequence pair representation V to
U , to prove that U is isomorphic to V . We know that there is a Lie algebra morphism L̃ −→ V .
�erefore, there exists a unique θ : U −→ V . Note that θ ◦ γ and γ ◦ θ are the identity map on the
generating elements of both algebras (namely the elements of the Jordan-Kantor pair). �
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7 Hopf duals and algebraic groups

In this chapter, we apply and generalize the results of the second article of Faulkner [Fau04]. �e
only generalizing results are contained in the third and ��h section. �is will link the theory
developed by us to a�ne algebraic group schemes. Although the theory developed by Faulkner
applies to broader contexts than only �elds, we will assume, throughout this chapter, that Φ is a
�eld.

7.1 Hopf duals

Suppose that V is a Φ-vector space. We want to endow V with a topology. To achieve that, we
consider a base B of linear subspaces of V which we consider to be a base for the neighborhoods of
0. �e fact that B forms a basis, means precisely that for each k, l ∈ B there existsm ∈ B such that
m ⊂ k ∩ l. �is induces a linear topological Φ-vectorspace structure VT , with T the topology
generated by B.

Between linear topological Φ-vectorspaces, we only consider continuous maps. If we write V we
mean V with the discrete topology, i.e. {0} is the basis B. So, we see that

Hom(VT ,W ) = {φ ∈ Hom(V,W ) : φ(I) = 0 for some I ∈ B}.

We can identify this functor Hom, with a functor

Hom : LTopVecopΦ × LTopVecΦ −→ VecΦ,

where LTopVecΦ denotes the category of linear topological vectors spaces and VecΦ the category
of Φ-vector spaces.

Now, we want to use these structures to dualize a Hopf algebra H in a meaningful way. We set, for
Hopf algebrasH with a linear baseB generating a topology T ,H∗T = Hom(HT ,Φ). �e operations
on this new algebra, which we denote in the following equations with A, are given by

µA = Hom(∆H , µΦ), (7.1)
ηA = Hom(εH , IdΦ), (7.2)

∆A = Hom(µH ,∆Φ), (7.3)
εA = Hom(ηH , IdΦ), (7.4)
SA = Hom(SH , IdΦ), (7.5)

with ∆Φ(λ) = µ−1
Φ (λ) for all λ ∈ Φ. �is gives A a Hopf algebra structure by [Fau04, �eorem

3]. Suppose again that H is a Hopf algebra. We want the operators ε,∆, S to be continuous for H ,
if we endow it with a linear topological vectorspace structure. We de�ne, to identify a su�cient
condition, an operator ∧ on the linear subspaces, by se�ing

I ∧ J = ker((πI ⊗ πJ) ◦∆),
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with πI , πj the projections H −→ H/I. �e maps ∆, ε, S are continuous given

there is K ∈ B with K ⊂ ker(ε), (7.6)
for I, J ∈ B, there is K ∈ B with K ⊂ I ∧ J, (7.7)

for I ∈ B, there is J ∈ B with J ⊂ S−1(I). (7.8)

A linear basisB of ideals satisfying the above conditions with eachH/I �nite-dimensional, is called
a Hopf dualizing base. �is ensures the continuity of the operators ∆, ε and S on H∗T .

Lemma 7.1.1 (Corollary 7, [Fau04]). If B is a family of algebra ideals of a Hopf algebra H such
that for I, J ∈ B,

1. there is K ∈ B with K ⊂ I ∧ J ,

2. there is K ∈ B with K ⊂ S−1(I),

3. ε(I) = 0,

4. H/I is �nite-dimensional,

then B is a Hopf dualizing base.

Proof. B is a linear base since I ∧ J ⊂ I ∩ J. All other properties clearly hold. �

Example 7.1.2. Let

H =

∞⊕
n=0

Hn

be a Z-graded Hopf algebra so that each Hn is �nite-dimensional over Φ. Let Im =
⊕∞

n=mHn, so

H/Im ∼=
m−1⊕
n=0

Hn.

�ese ideals satisfy the conditions of Lemma (7.1.1), so that B = {Im : m > 1} forms a Hopf
dualizing base. In this case, the continuous dual H∗T is also the graded dual Hg . �e graded dual
of a graded vector space

⊕
i Vi is V g =

⊕
i V
∗
i with trivial action V ∗i on Vj for i 6= j. �is means

that if each of the Hn is �nite-dimensional, then (Hg)g = H as Hopf algebras.

Set
n∧
I = I ∧

n−1∧
I,

1∧
I = I.

�eorem 7.1.3 (�eorem 8, [Fau04]). Let F be a family of algebra ideals in a Hopf algebra H
such that for all F,K ∈ F , we have J ∧K ∈ F and such that the image of

(πJ ⊗ πK) ◦∆

is a direct summand of H/J ⊗ H/K . If I ∈ F is such that ε(I) = 0, S(I) ⊂ I , and H/I is
�nite-dimensional, then

B(I) =

{
n∧
I : n ≥ 1

}
forms a Hopf dualizing base with topology T . Moreover, H∗T is generated as an algebra by

ZH∗(I) = {f ∈ H : f(I) = 0} .

�erefore, H∗T is �nitely generated as an algebra.
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7.2 Algebraic groups

De�nition 7.2.1. A functor F : Φ-alg −→ C is a Φ-functor. Such is functor is an a�ne scheme
if there exists a commutative Φ-algebra Φ[F ] such that F is equivalent to HomΦ-alg(Φ[F ],−). An
a�ne scheme is algebraic if Φ[F ] is a �nitely generated algebra. A Φ-functor, which is also an
a�ne scheme, to Grp is a Φ-group scheme. An algebraic Φ-group is a Φ-group scheme which
is algebraic as an a�ne scheme.

If G is a Φ-group scheme, then Φ[G] is a commutative Hopf algebra and the product on G(K) is
given by

fg = µK(f ⊗ g) ◦∆,

with µK the multiplication on K . Conversely, any commutative Hopf algebra induces a group
scheme in this way. So,GHT = HomΦ-alg(H∗T ,−) is a group scheme ifH is a cocommutative Hopf
algebra. If H,F , I are as in �eorem (7.1.3) we denote the group scheme by GH,I .

Lemma 7.2.2 (Lemma 10, [Fau04]). If I is an algebra ideal of �nite codimension in a cocommuta-
tive Hopf algebra H over Φ with I ⊂ ker(ε) and S(I) ⊂ I , then GH,I is an algebraic Φ-group. If H ′

is a Hopf subalgebra of H and I ′ = I ∩H ′, then GH′,I′ is an algebraic Φ-subgroup of GH,I .

Consider the Hopf algebra Φ[G] for a Φ-group scheme G. We want to consider a suitable dual of
Φ[G]. Let I = ker(ε) and assume that each Φ[G]/In, n > 0 is a �nite-dimensional vectorspace.
�is forms, as indicated in [Fau04, Example 6], a Hopf dualizing base. We set

Dist(G) = Φ[G]∗T .

We call this the distribution or hyperalgebra of G. �e Lie algebra, as de�ned in [Jan87, Para-
graph 7.7], of G is

Lie(G) = {f ∈ Dist(G) : f(1) = 0, f(I2) = 0},

this coincides with the set of primitive elements of Dist(G). �is is, as indicated in [DG70, II.§
4.6.8] or [Mil13, Proposition 3.4], the usual Lie algebra associated to group schemes, namely the Lie
algebra de�ned by the kernel of G(π) with

π : Φ[ε] −→ Φ : a+ bε 7−→ a,

with Φ[ε] the dual numbers. We remark that each algebraic Φ-group satis�es this condition. Indeed,
Φ[G] = Φ1⊕ker(ε) is �nitely generated as an algebra. So, we can choose generators 1, x1, . . . , xm
with xi ∈ I . Observe that 1 and the monomials in xi span Φ[G]. We also note that I is spanned
by all monomials. So, In is spanned by all monomials of length at least n. Hence, Φ[G]/In is
�nite-dimensional.

7.3 Finite-dimensional sequence Φ-groups over �elds

Let G be a sequence Φ-group. We identify it with a Φ-group functor

K −→ G(K).

We note that this is, for �nite-dimensional G, an algebraic Φ-group. Namely, consider a basis B
for G(Φ). We see that if we take A to be the ring Φ[B], i.e. the polynomial ring with variables in
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B, that G is equivalent to K 7→ HomΦ-alg(A,K). Since A is �nitely generated, we see that this
scheme is algebraic.

We can take the commutative Hopf algebra corresponding to the group structure. Consider the
unique f = G/H1(Φ)⊗G/H1(Φ) −→ H1(Φ) corresponding to the bilinear formψ in (a, b)(c, d) =
(a+ c, b+ d+ ψ(a, c)). Using this f we get that the coproduct

∆(ei) = ei ⊗ 1 + 1⊗ ei + f̃∗(ei),

where we used f∗ to denote the dual of f going fromH1(Φ)
∗ −→ G/H1(Φ)

∗⊗G/H1(Φ)
∗ and f̃∗

to mean that we extended it with image 0 to the whole of G (note that the tensor product interacts
well with the duals since we are working with �nite-dimensional vector spaces). �e other maps
ε, S are given by 0 and −Id on these generators. Note that Φ[G] has a natural grading on the
generators. Namely, consider ei dual to G/H1 to be 1-graded and ei as 2-graded if it is dual to H1.
So, we get a grading on Φ[G] if we set 1 to be 0-graded.

We want to identify the universal sequence Φ-group representation with Dist(G). First, we con-
struct the universal sequence group representation directly. Set A to be the unital associative alge-
bra generated by symbols gi for g ∈ G(Φ), i ∈ N. We consider the quotient A′ with respect to the
following relations, for g, g′ ∈ G(Φ) and λ ∈ Φ:

1. g0 = 1,

2. (λ · g)n = λngn,

3. (gg′)n =
∑

i+j=n gig
′
j ,

4. (1)n = 0, n > 0,

5. hi = 0 for h ∈ H1, i odd,

6. gjgi =
∑

a+2b=i+j

(
a
i−b
)
ga(g

2
1 − 2g2)2b,

7. [gj , g
′
i] =

∑
a+c=i
b+c=j
c 6=0

g′agb[g, g
′]2c.

Note that this is a Z-graded algebra. One easily endows A′ with a Z-graded Hopf algebra structure
by se�ing ∆(gn) =

∑
i+j=n gi ⊗ gj , ε(gi) = δi0, S(gn) = (g−1)n.

We generalize [Fau04, Lemma 12] from binomial divided power representations, to �nite-dimensional
sequence Φ-groups over �elds.

Lemma 7.3.1. If G is a �nite-dimensional sequence Φ-group over Φ, then Dist(G) = (Φ[G])g ∼= A′

as Z-graded Hopf algebras.

Proof. We recall that the operations on Dist(G) = (Φ[G])g are given by equations (7.1), (7.2), (7.3),
(7.4) and (7.5). We �x a basis of G, so that we can freely go to the dual vectorspace by mapping
a 7→ a∗. We assume that this basis corresponds to seeing G as a direct sum of G/H1 and H1. We
certainly have elements in Dist(G) which act on the 1-graded elements of Φ[G] by le�ing them
evaluate a certain g ∈ G(Φ). We let a = (a, 0) ∈ G(Φ) act as

a(f) = f(a).

Also, if h ∈ H1(Φ) the we let hn act on the 2n-graded elements of Φ[G] by le�ing f1 . . . fn evaluate
to f1(h) . . . fn(h) and mapping other 2n-graded monomials in Φ[G] to 0. Speci�cally, the other 2n-
graded monomials are those which have more than n contributing terms in the product, i.e. there
are 1-graded generators which are part of the product. We note that the properties of [Fau04,
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Lemma 12] will hold for these elements hn, as they are the elements of that lemma with action
extended to Φ[G] by se�ing them to be 0 on monomials with contributing 1-graded generators.
Moreover, they are contained in the center of (Φ[G])g , as a straightforward computation shows.
We set (a, ψ(a, a))n = an and let an act on n-graded monomials of Φ[G] by mapping

(f1 . . . fk)(f
′
1 . . . f

′
l ) to f1(a) . . . fk(a)f ′1(ψ(a, a)) . . . f ′l (ψ(a, a))

where we split the monomial in a product of 1-graded generators and a product of 2-graded gen-
erators.

As such, we de�ne a sequence group representation of G(Φ) by se�ing

(a, b)n = (a, ψ(a, a) + b′)n =
∑

i+2j=n

aib
′
j .

Firstly, this is clearly compatible with the scalar multiplication. We now prove that this is a group
morphism. It is a group morphism on the elements of the form (0, b). We could prove this directly,
but we refer to [Fau04, Lemma 12]. Moreover, using this, the fact that all (0, b)i commute with
everything and the de�nition of (a, b)n we get that (a, b) · (0, c) = (0, c) · (a, b) = (a, b + c). So,
we only need to see whether

(a, ψ(a, a)) · (b, ψ(b, b)) · (0, ψ(b, a)) = (a+ b, ψ(a+ b, a+ b)),

holds for all a, b. So, we need to show that∑
i+j+2k=n

aibjψ(b, a)k = (a+ b)n

holds for all n ∈ N. So, we let it act on a n-graded element
∏
i∈I1 fi

∏
i∈I2 f

′
i , where we split the

product into a product of 1-generators generators and a product of 2-graded generators. We see
that∑
i+j+k=n

(aibjψ(b, a)k)(
∏
i∈I1

fi
∏
i∈I2

f ′i)

=
∑

i+j+k=n

∑
(p,q)∈P (I1)
|p|≤i
|q|≤j

(
∏
f∈p

f(a)
∏
f∈q

f(b))(ai−|p|bj−|p|ψ(b, a)k)(
∏
i∈I2

f ′i)

=
∑

(p,q)∈P (I1)

(
∏
f∈p

f(a)
∏
f∈q

f(b))
∑

i+j+k=n−|p|−|q|

(aibjψ(b, a)k)(
∏
i∈I2

f ′i)

=
∑

(p,q)∈P (I1)

(
∏
f∈p

f(a)
∏
f∈q

f(b))(
∑

(kψ(a,a),kψ(a,b),kψ(b,b),kψ(b,a))∈P ′(I2)

∏
ku

∏
f∈ku

f(u)),

where P (I) denotes the partitions of I into 2 sets and P ′(I) the partitions of I into 4 sets, now
we justify the individual steps. �e �rst step is using partial evaluation on the 1-graded generators
using the de�nition of the multiplication. �e second step is interchanging summations signs. �e
third step is then evaluating on the 2-graded generators also using the de�nition of the multiplica-
tion. �e partition corresponds to a generator being fully evaluated by ai, being partially evaluated
in ai and partially evaluated in bj , being fully evaluated in bj or being evaluated in ψ(b, a). �e
possible partial evaluation comes from the fact that ∆(f ′i) = f ′i ⊗ 1 + 1 ⊗ f ′1 + ψ∗(f ′) and that
ψ∗(f ′) can be used to contribute in ai and in bj . Evaluating using (a+ b)n yields the same expres-
sions. Speci�cally, it is evaluation in (a+ b)n and then using linearity of the f ’s and ψ on a+ b (or
ψ(a+ b, a+ b)) to get to the same expressions.
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We also prove that this is a sequence Φ-group representation. We must prove that the equations
(2.1) and (2.2) hold. By [Fau04, lemma 12] we already know that if we seeH1, using Remark (2.2.4),
as a sequence Φ-group that the equations of the lemma hold. Moreover, we also know that the
elements hn for h ∈ H1(Φ) are contained in the center. So, we can assume that we are working
with elements of the form (a, 0)n. In the following part of the proof we mean by ai = (a, 0)i. For
such elements, the proof of equation (2.1) is relatively easy. We compute that

ajai =
∑

c+2b=i+j

(
c

i− b

)
acψ(a, a)b,

by seeing that they agree on the elements (a∗)n−2i(ψ(a, a)∗)i.�is is su�cient, since the evaluation
of other elements can be done by computing a projection onto these elements and evaluating, as all
evaluations of generators will either be in a, in ψ(a, a) or in 0. So, we can replace each generator
a multiple of a∗ or ψ(a, a)∗ which evaluates the same on a and ψ(a, a). �e binomial coe�cient
comes exactly from the fact that if you act on (a∗)c(ψ(a, a)∗)b, then there are

(
c
i−b
)

ways how (a∗)c

can split over aj , ai to contribute, as (ψ(a, a)∗)b can only contribute by spli�ing up in two equal
parts contributing in aj and in ai.

We also prove equation (2.2). We remark that it is su�cient that the second equation holds for a
generating set. So, we can assume that a is orthogonal or equal to b (a∗(b) = 0 or a = b). So, is the
equation

aibj =
∑

k+m=j
l+m=i

bkal[a, b]m

satis�ed? If a = b, this is a consequence of the �rst equation. Speci�cally, the binomial coe�cients(
c
i−b
)

and
(
c
j−b
)

are equal in each term of the right hand side, as (i− b) + (j − b) = c. So, we can
assume that a∗(b) = b∗(a) = 0. �is makes it easy to work with a projection. Speci�cally, we map
1-graded generators f using f 7−→ f(a)a∗ + f(b)b∗ and keep the 2-graded generators as they are.
We note that the le� hand side of the equation is determined by

(a∗)i−o(b∗)j−o(ψ(a, b)∗)o 7−→ 1

for all o ≤ min(i, j), using the de�ned projection and a projection ontoψ(a, b)∗. For the right-hand
side, we do not have a projection. However each product of 2-graded generators gets partitioned
into a part which gets evaluated by bkal (i.e they are evaluated in ψ(b, a)) and a part which gets
evaluated by [a, b]m. We will show that this is the same as evaluating all 2-graded generators
in ψ(a, b). Speci�cally, set o = min(i, j). We look at what happens to the 2-graded generators
contributing to an i + j-graded element. Speci�cally, we show that if there are at most w ≤ o
contributing 2-generators, then we can evaluate using a projection on (ψ(a, b)∗)w. If there are
more, then we will show that the evaluation yields, necessarily 0.

�ere are at most p = min(k, l) evaluations in ψ(b, a) and there are exactly m evaluations in [a, b]
if we use a term in the right hand side to evaluate an i + j-graded element. Since p + m = o =
min(i, j), we know that there are at most o 2-graded generators in an element which does not
evaluate to 0. Suppose that w ≤ o. An i+ j-graded element with w 2-graded generators evaluates
by considering all partitions (p̃, m̃) of w and evaluating the p generators in p̃ in ψ(b, a) and the m
generators of m̃ in [a, b]. As all p+m = w are possible, this is the same as immediately evaluating
all 2-graded generators in ψ(a, b). So, we see that we evaluate all 2-graded generators in ψ(a, b)
and depending on the amount w of 2-graded generators we evaluate l− (w−m) = i−w times in
a and k− (w−m) = j −w times in b in a term of the right hand side. Hence, we have a sequence
Φ-group representation.
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Now, we want to prove that this representation is a universal sequence Φ-group representation. In
what we have done, we identi�ed a graded dual basis of Φ[G]. Namely, order the chosen basis of
G to get {e1, . . . , en} on the G/H1 part. �e ordering on the la�er does not ma�er since these
elements are all in the center. We denote the basis of H1 by h1, . . . hm. �en we consider the
monomials of the form

(e1, 0)n1 . . . (en, 0)nnn(h1)m1 . . . (hm)mm .

�ese, clearly, form a graded dual basis of Φ[G]g .

For each sequence Φ-group representation ρ : G −→ A there is a unique ρ̂ going from these
monomials to A. �is extends to a unique linear map going from Φ[G]g to A. We prove that it
is an algebra morphism. �is actually follows from the calculations we have done, to show that
the representation is a sequence Φ-group representation. Speci�cally, using the proved equations
(namely equations (2.1) and (2.2)), there exists a unique way to write a product of two monomials in
the basis as a sum of monomials in the basis. �ese equations hold in a general sequence Φ-group
representation. So, we know that ρ̂ behaves like a morphism on a generating set. �erefore, it is a
morphism.

We note, thus, that Φ[G]g is the universal representation. We want to see that the Hopf algebra
structure on Φ[G]g coincides with the earlier constructed Hopf algebra structure on the universal
representation. As in [Fau04, Lemma 12] ∆, ε, S have all the right properties onH1. So, the question
remains whether they have all the right properties on the whole ofG. We consider elements (a, 0)n
and want to show that all the right properties are satis�ed. We note that

ai ⊗ aj(f1 ⊗ f2) = ai+j(f1f2),

so that ∆(an) =
∑

i+j=n ai ⊗ aj , since

∆(an)(f1 ⊗ f2) := µ−1
Φ (an(f1f2)).

Similarly, one sees that ε(a, b)n = (a, b)n(1) = 0 for n 6= 0. Lastly, one notes that S is already
uniquely determined on the generators by the fact thatµ◦(Id⊗S)◦∆ = η◦ε, so thatS(gn) = (g−1)n
necessarily holds. �

7.4 Group actions and comodules

Suppose that G is an a�ne group scheme and X is an a�ne scheme, then G has a le� action on X
if there exists a morphism G×X −→ X giving a group action of each G(K) on each X(K). �is
is equivalent with a le� comodule structure:

δ : Φ[X] −→ Φ[G]⊗ Φ[X].

Speci�cally, one can go back and forth using

g · x = µK(g ⊗ x) ◦ δ

and
δ(v) = IdΦ[G] · (1⊗ v).

Similarly one can de�ne right actions and right comodules. If one considers a linear topological
vector space VT , then we require that the action of G is continuous.
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�e Φ-torus Φm is the a�ne algebraic group scheme with Φ[Φm] = Φ[T, T−1] and ∆(T ) =
T ⊗ T, ε(T ) = 1, S(T ) = T−1. As a consequence Φm(K) is the group of units of K . Since the
torus is always a commutative group (as it has a cocommutative coordinate algebra), we do not
bother in di�erentiating le� and right group actions, we also do not need to di�erentiate between
le� and right comodules.

Lemma 7.4.1 (Lemma 13, [Fau04]). A Φ-module V is a le� Φm module if and only if V isZ-graded
with

g · (vi ⊗ 1k) = ti(vi ⊗ 1K)

for g ∈ Φm(K) with g(T ) = t and vi ∈ Vi. Moreover, Φm-homomorphisms coincide with graded
homomorphisms. A Hopf algebra H is Z-graded as a Hopf algebra if and only if Φm acts by auto-
morphisms on H . Also, Φm acts as automorphisms of an a�ne group scheme G if and only if Φ[G] is
Z-graded as a Hopf algebra.

Lemma 7.4.2. If G is a �nite-dimensional sequence Φ-group, then the standard grading on the uni-
versal sequence group representation of G corresponds to G being a Φm module under the scalar mul-
tiplication of sequence groups.

Proof. �is is, mutatis mutandis, [Fau04, Lemma 14]. �

Lemma 7.4.3. If HT is a �nitely generated Hopf algebra, then H is Z-graded as a Hopf algebra, and
if T is a linear base of graded subspaces, then H∗T is a Z-graded Hopf algebra.

Proof. �is is a weaker formulation of [Fau04, Corollary 19]. �

7.5 Sequence pairs

Now that we have introduced all necessary concepts, we can generalize the last 2 theorems of the
article in consideration [Fau04]. Recall that we identi�ed, at the beginning of section 5.3 three
subalgebras of the universal representation U(G) of a sequence pair G, namely X , Y,H.

�eorem 7.5.1. If G is a �nite-dimensional Jordan-Kantor-like sequence pair over Φ, J is the kernel
of the TKK representation, and

I = ker(ε) ∩ J ∩ S(J),

then G′ = GU(G),I is an algebraic Φ-group, with algebraic Φ-subgroups

U+ = GX ,I+ ∼= G+, U− = GY,I− ∼= G−, H = GH,I0 ,

with I+ = X ∩ I, etc.

Proof. Since TKK(G) is �nite-dimensional, J and I have �nite codimension. Moreover, since U(G)
is cocommutative, we get, by [MM65, Proposition 8.8], that S2 = Id. We also know that ε ◦ S = ε.
We see, furthermore, that S(I) = I . Lemma (7.2.2) shows that G is an algebraic Φ-group with
algebraic subgroups U+, U− andH . Note that Φ[G+]g is isomorphic to the subalgebra X of U(G),
since each representation of the sequence group G+ can be extended to a representation of the
sequence pair, by using the trivial representation for G−. We note that I5 ⊂ I+ ⊂ I2, with
Im =

⊕∞
n=m+1(G+)n, since the TKK-representation has ρ+

n = 0 for n > 5 and since ker(ρ1
+) = 0.

As a consequence, using In ∧ Im = In+m, the linear bases {
∧n I+} and {In} determine the same

topology on X . By Lemma (7.3.1) we know that U+, U− satisfy Φ[U+] ∼= (Φ[G+]g)g ∼= Φ[G+] and
Φ[U−] ∼= Φ[G−]. We conclude that U± ∼= G±. �
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7 Hopf duals and algebraic groups

Remark 7.5.2. Faulkner also proves that H acts as automorphisms on the sequence pair U+, U−.
However, we do not replicate the proof as it is quite long and it would require the introduction of a
lot of additional concepts. With the theory developed in this thesis, it is possible to generalize what
Faulkner proves to ‘H acts as automorphisms if the characteristic of Φ is di�erent from 2 and 3’.

We generalize the notion of an elementary action of the torus Φm on a separated Φ-group sheaf
G as de�ned by Loos [Loo79]. However, we restrict ourselves to a�ne algebraic group schemes,
as the result we are interested in only involves those. Suppose that G is an a�ne algebraic group
scheme with subgroup a�ne algebraic subgroup schemes H,U+, U−, and an action of Φm by
automorphisms of G, such that

1. H is �xed by Φm,

2. U+, U− are algebraic group schemes corresponding to sequence Φ-group on which the action
of km corresponds to scalar multiplication (respectively, the inverse of scalar multiplication),

3. Ω = U−HU+ is open in G,

4. G is generated as a Φ-group sheaf by H,U+, U−,

then we call this action on G a generalized elementary action of Φm.

For the next theorem, we �rst need to generalize [Loo79, Lemma 3.4].

Lemma 7.5.3. For any generalized elementary action

U− ×H × U+ −→ G

is an open embedding.

Proof. It is su�cient to prove that this map is injective. We denote the embedding of U± in G by
exp. So, suppose that

exp(y)h exp(x) = h′,

for some y, x, h, h′. We want to show that x = 1 = y and h = h′. We let t ∈ Φm act upon the
previous expression to get

exp(t−1 · y)h exp(t · x) = h′.

We suppose t = 1 + ε with Φ[ε] the dual numbers. We see that

exp((1− ε) · y)h exp((1 + ε) · x).

We compute that
(1 + ε) · x = x× (ε · x)× (ε ·H1 2x2 − x2

1),

where we use 2x2 − x2
1 to represent the element of H1 corresponding to x(−x). Similarly, we get

(1− ε) · y = (−ε ·H1 2y2 − y2
1)× (−ε · y)× y.

So, we conclude that

exp(−εy1, ε(y
2
1 − 2y2)) exp(y)h exp(x) exp(εx1, ε(2x2 − x2

1)) = h′,

where we introduced the �rst coordinates of x and y as x1 and y1. �is implies that

exp(−εy1, ε(y
2
1 − 2y2))h

′
= exp(−εx1,−ε(2x2 − x2

1)).
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7 Hopf duals and algebraic groups

However, this is impossible with y1 6= 0 6= x1, since

t · exp(−εx1,−ε(2x2 − x2
1)) = t exp(−εy1, ε(y

2
1 − 2y2))h

′

= t−1 · exp(−εy1, ε(y
2
1 − 2y2))h

′

= t−1 · exp(−εx1,−ε(2x2 − x2
1))

for all t ∈ Φm, i.e. tx1 = t−1x1 for all t ∈ Φm. Using similar considerations using Φ[ε′] with
ε′4 = 0, one shows that the second coordinates are also zero. �

�eorem 7.5.4. IfG is an a�ne algebraic group scheme, then every generalized elementary action of
Φm on G gives a Z-grading of Dist(G) as a Hopf algebra, such that the induced Z-grading of Lie(G)
is

Lie(G) = Lie(U−)2 ⊕ Lie(U−)1 ⊕ Lie(H)⊕ Lie(U+)1 ⊕ Lie(U+)2

and there is a homogeneous divided power sequence over each x ∈ Lie(U±). Moreover,

(Lie(U+), Lie(U−))

is a (Jordan-Kantor-like) sequence pair1.

Proof. By Lemma (7.4.1), the action of Φm on G by automorphisms corresponds uniquely to a Z-
grading of Φ[G] as a Hopf algebra. Since I = ker(ε) is a graded ideal, each In is graded and Dist(G)
= Φ[G]∗T is graded by Lemma (7.4.3).

Lemma (7.5.3) shows that
U− ×H × U+ −→ G

is an open embedding, so we get

Lie(G) = Lie(U−)⊕ Lie(H)⊕ Lie(U+).

Since H is �xed by Φm, we see that

Φ[H] = Φ[H]0, Dist(H) = Dist(H)0, and Lie(H) ⊂ Lie(G)0.

Since Φm acts on U+ by the scalar multiplication of the sequence Φ-group, the grading on Φ[U+]
is, by Lemma (7.4.2) the usual one. �us

Lie(U+) ⊂ Dist(U+)1 ⊕ Dist(U+)2,

and therefore Lie(U+) ⊂ Lie(G)1 ⊕ Lie(G)2. Similarly, one proves that Lie(U−) ⊂ Lie(G)−1 ⊕
Lie(G)−2. Lemma (7.3.1) shows that there is a homogeneous divided power sequence over each
element of Lie(U±). Finally, �eorem (2.4.23) proves that this is, in fact, a sequence pair. One
easily shows that this representation of this sequence pair is a Jordan-Kantor-like sequence pair
representation. �

1Technically we did not really de�ne Jordan-Kantor-like sequence pairs if 1/2 /∈ Φ. However, this should fall under
any extended de�nition. Furthermore, later we will de�ne them and this will fall under the extended de�nition.
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8.1 Derivations

De�nition 8.1.1. If G is a sequence pair over Φ with a de�ning representation in A, then we
mean by GK , for K ∈ Φ-alg, the sequence pair with de�ning representation in A⊗K . Note that
this is something di�erent than G(K), as the la�er is not a sequence pair. It is, however, true that
GK is fully determined from the representation of G(K) in A⊗K . We use the same notation for
sequence groups G′.

�eorem (7.5.1) indicates that it is only natural to de�ne the derivations as the pairs of graded
Φ-module endomorphisms (δ+, δ−) of G+, G− (we mean by this that δ±(a, b) = (δ±1 a, δ

±
2 b)) such

that (Id+ εδσ) are sequence group automorphisms forGσΦ[ε] with Φ[ε] the dual numbers, and such
that

(Id + εδσ)Xx(y) = X(Id+εδσ)x((Id + εδ−σ)y)

holds strictly, for all operators X = Q,T or even P in the case of Jordan-Kantor-like sequence
pairs. Formulated di�erently, we ask that (Id + εδ+, Id + εδ−) is an automorphism of the sequence
pair GΦ[ε]. �e assumption that these δ must be graded, is there since we need compatibility with
the scalar multiplication of the sequence groups.

A straightforward computation shows that δ(a, b) = (δ1a, δ2b) induces a sequence group morphism
Id + εδ if and only if δ2ψ(a, b) = ψ(δ1a, b) +ψ(a, δ1b), with ψσ the usual bilinear form associated
with the product of the groups. Before we continue with Q, it is useful to rewrite the action of

Id + εδ,

namely, it maps an element (a, b) to

(a+ εδ1a, b+ ε1δ2b) = (a, b) · (εδ1a, 0) · (0, ε(δ2b− ψ(a, δ1a))).

We will denote this composition as

(Id + εδ)x = x · (εx′) · (ε ·H x′′).

�is is useful, since we cannot linearize expressions in sums of elements ofGwell. However, we can
linearize products of such elements. Using this composition, one computes that on T the restriction
becomes

δTxy = T
(2,1)
x,x′ y + T

(1,2)
x,x′′ y + Txδy,

with T (i,j) the (i, j)-linearization of T . For the operator Q, it is not that easy. We can compute
that

Qx(a, b) = (Q1
xa,Q

3
xa+Q2

xb),

with Q1, Q2 as usual and Q3
xa varying by Q3

tx(sa) = t4s2Q3
xa (we will see that this is a quadratic

form in a). So, if we apply a sequence pair automorphism (Id + εδ), we get

(Q1
xa+ εδ1Q

1
xa,Q

3
xa+Q2

xb+ εδ2(Q3
xa+Q2

xb)) = Q(Id+εδ)x((Id + εδ)(a, b)).
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So, we compute the right hand side, in order to compare the coe�cients of ε. We get

(Q1
x(a+ εδ1a) + εQ

1,(1,1)
x,x′ (a) + εQ1

x′′(a),

Q3
x(a+ εδ1a) + εQ

3,(3,1)
x,x′ (a) + εQ

3(2,2)
x,x′′ a+Q2

x(b+ εδ2b) + εQ
2,(3,1)
x,x′ (b) + εQ

2,(2,2)
x,x′′ (b)),

where the (i, j) stands for (i, j)-linearization. Since Q3
x(a + εδ1a) varies quadratically with the

coe�cient of a, we need to do some work to determine the term belonging to ε. We denote this
linearization, in the following restriction as fx(a, b). So, we have a sequence pair morphism if the
following equations hold:

• δ2ψ(a, b) = ψ(δ1a, b) + ψ(a, δ1b),

• δTxy = T
(2,1)
x,x′ y + T

(1,2)
x,x′′ y + Txδy,

• δ1Q
1
xa = Q1

xδ1a+Q
1,(1,1)
x,x′ a+Q1

x′′a,

• δ2Q
3
xa = fx(a, δ1a) +Q

3,(3,1)
x,x′ a+Q

3,(2,2)
x,x′′ a,

• δ2Q
2
x(h) = Q2

xδ2h+Q
2,(3,1)
x,x′ h+Q

2,(2,2)
x,x′′ h,

for all x ∈ Gσ(K), y = (a, h) ∈ G−σ(K), b ∈ G/H1
−σ(K).

We linearizeQ3
x(a) to a to determine what fx(a, δ1a) should be. Speci�cally, we compute what the

term belonging to t is in Q3
x(a+ tb). To achieve that, we compute

Qx(y · z)Qx(y)−1Qx(z)−1.

we note that the �rst coordinate is necessarily 0, since Q1
x is linear. We recall from Lemma (2.1.9)

that ad(n)
x (ab) =

∑
i+j ad(i)

x (a)ad(j)
x (b). We want to work with elements [a, b] and (a, b) in a de�n-

ing representation. So, we denote these elements for x, y as (a, b) for x, z as (a, b)′ and for x, y · z
as (a, b)′′, we do the same for the elements [a, b]. So, we compute

(4, 2)′′ = ad(4)
x (y·z)2 = ad(4)

x (y2+z2+y1z1) = (4, 2)+(4, 2)′+[1, 1][3, 1]′+[2, 1][2, 1]′+[3, 1][1, 1]′.

�erefore, using the fact that elements of the form [a, 1] are linear functions in the �rst coordinate
of the second dependency, we get

[4, 2]′′ = (4, 2)′′ − [1, 1]′′[3, 1]′′

= (4, 2) + (4, 2)′ + [[3, 1], [1, 1]′]− [1, 1]′[3, 1]′ − [1, 1][3, 1] + [2, 1][2, 1]′

= [4, 2] + [4, 2]′ + [[3, 1], [1, 1]′] + [2, 1][2, 1]′

= (Qx(y)Qx(z))2 + [[3, 1], [1, 1]′]

So, we see that
Qx(y · z) = Qx(y)Qx(z)(0,−Vx,zTxy).

We conclude that

fx(a, δ1a) = −Q2
xψ(a, δ1a) + ψ(Q1

xa,Q
1
xδ1a)− Vx,δ1aTxa,

as

(Q1
xa,Q

3
xa+Q2

xb)(Q
1
xc,Q

3
xc+Q

2
xd) = (Q1

x(a+c), Q3
x(a+c)−fx(a, c)+Q2

x(b+d)+ψ(Q1
xa,Q

1
xc))
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8 Derivations of sequence pairs

should equal
(Q1

x(a+ c), Q3
x(a+ c) +Q2

x(b+ d+ ψ(a, c)) + Vx,cTxa).

If 1/2 ∈ Φ we can assume that we are working with sequence groups in standard form, so that
ψ(a, δa) = [a, δa]/2. We know how Q2

x interacts with the group commutator. Namely, we can use
that

(Q2
x[a, b])2 = ad(4)

x [a, b]2

= [(Txa)2, [x1, b1]] + [(Qxa)1, (Qxb)1] + [[x1, a1], (Txb)2]

= (−Vx,bTxa)2 + (Vx,aTxb)2 + [Qxa,Qxb]2.

�is lets us rewrite
fx(a, δ1a) = −1/2(Vx,δ1aTxa+ Vx,aTxδ1a).

Note that f is a symmetric bilinear form. It is possible to prove that fx is bilinear if 1/2 /∈ Φ as
well, making use of the fact that ψ(a, b)− ψ(b, a) = [a, b] to compute fx(a, b)− fx(b, a).

Remark 8.1.2. Note that it is not at all obvious that the operators Vx,y , for any Jordan-Kantor-
like sequence pair, satisfy the previous equations. However, if 1/6 ∈ Φ it is relatively easy to
prove without any computation. Speci�cally, consider B(x, εy) = 1 + ε[1, 1] for x ∈ G−σ(Φ)
and y ∈ Gσ(Φ). �is acts, using conjugation in the TKK representation, as an automorphism.
Hence, ad [1, 1] = Vx,y is a derivation. Similarly, one can show that [2, 2] induces a derivation if
y ∈ H1

σ(Φ).

Note that the derivations are closed under linear combinations. Suppose that δ, δ′ are derivations.
We look at Φ[ε, ε′] with ε2 = ε′2 = 0. We know that (Id + εδ), (Id + ε′δ′) are automorphisms of
GΦ[ε,ε′]. �erefore,

(Id + εε′[δ, δ′]) = [(Id + εδ), (Id + ε′δ′)]

is an automorphism of G(Φ[ε, ε′]). We note that this automorphism maps the subgroup

G(Φ[ε · ε′]) ∼= G(Φ[ε])

to itself. Moreover, the action on G(Φ[ε]) is exactly given by Id + ε[δ, δ′]. �is proves that [δ, δ′]
is a derivation of G. Hence, we know that the derivations of a sequence group form a Lie algebra
over Φ. We call this algebra the derivation algebra of G. We follow Loos [Loo75] in this naming
convention for Jordan pairs, and do not make a distinction between the structure algebra and the
derivation algebra if there is no clear unit.

8.2 TKK Lie algebras and representations

Suppose that we have a sequence pairGwith an additional operator P satisfying De�nition (4.3.1),
i.e. we have a Jordan-Kantor-like sequence pair without the assumption that 1/2 ∈ Φ. We will
try, by making use of the derivation algebras, to determine exactly what the Jordan-Kantor-like
sequence pairs should be. We set

InDer(G) = 〈[1, 1]|x ∈ G+(Φ), y ∈ G−(Φ)〉+ 〈[2, 2]|x ∈ Gσ(Φ), h ∈ H1
−σ(Φ)〉,

i.e. the linear combinations of the mentioned elements. We will later see that this is a Lie algebra
under certain conditions.
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De�nition 8.2.1. A Jordan-Kantor-like sequence pair (with 1/2 not necessarily in Φ) is a
sequence pair G with additional operator P with a de�ning representation, satisfying additional
restrictions (4.4) and (4.5) (�e restrictions for a Jordan-Kantor-like sequence pair if 1/2 ∈ Φ), such
that the conjugation with B(sx, ty) = 1 + st[1, 1] + s2t2[2, 2] + . . . induces an automorphism
of the sequence pair for all x ∈ G±(Φ), y ∈ G∓(Φ). A Jordan-Kantor-like sequence pair
representation is a sequence pair representation satisfying these additional restrictions and if it
enjoys the same conjugation action as the de�ning representation (i.e. conjugation with B(sx, ty)
is an integral part of the structure).

Remark 8.2.2. �is de�nition coincides with the previous de�nition of a Jordan-Kantor-like se-
quence pair with 1/6 ∈ Φ. It might be true that the new de�nition is a bit more restrictive in the
case that 1/3 /∈ Φ. If this is the case, then we want the new de�nition.

�eorem 8.2.3. �e universal Jordan-Kantor-like sequence pair representation of a Jordan-Kantor-
like sequence pair G is a Z-graded Hopf algebra.

Proof. We �rst consider the universal representation U of the Jordan-Kantor-like sequence pair G
without the conjugation action (�is is the universal sequence pair representation with the addi-
tional Jordan-Kantor-like sequence pair restrictions divided out). Lemmas (4.1.1) , (4.1.3) and (4.1.5)
prove that the Jordan-Kantor-like sequence pair representations of G without the conjugation ac-
tion de�nitely form a sensible collection of representations. Notice that these lemmas also imply
thatB(sx, ty) can be interpreted as an operator which is an integral part of the representations (i.e.
it is compatible with algebra morphisms, representations ρ ⊗ ξ and representations ρ ◦ (·−1) and
even with the adjoint representation). We can apply �eorem (4.1.12) to prove that U is a Z-graded
cocommutative Hopf algebra.

Now we consider the conjugation action. �e question is, whether this action is preserved. We
already know that B = B(sx, ty) is a well-determined element of U [[s, t]]. In fact, it is su�cient
to ensure that the conjugation action coincides with the conjugation action in the de�ning repre-
sentation. So, we know that the divided power series s1 = exp(z)B should be the divided power
series s2 = exp(zB). �is is equivalent to requiring that s1 × S(s2) = (1), as sequences in the
sequence group formed by all divided power series. We note that s3 = s1×S(s2) is a well de�ned
divided power series. So, we need to ensure that (s3)n = 0 for n ≥ 1. �is is, clearly, necessary and
su�cient. We prove that the ideal I generated by these (s3)n is a Hopf ideal. Firstly, it is clearly a
coideal. Secondly ε(I) = 0 as this is the case for all generators. �irdly, S(I) ⊂ I since the inverse
of s3, namely S(s3), can be computed using the usual algorithm for computing the inverse of a
power series. �is algorithm ensures that S(s3)n is a polynomial in the (s3)i and if n > 0 we know
that in each contributing term there is at least one (s3)i with i > 0. Note that this Hopf ideal is
compatible with the grading.

Now we de�ne J as the ideal formed by all these ideals I for all x and y. Note that J is a Hopf
ideal of U [[s, t]] instead of U and that J is generated by (possibly in�nite sums) of homogeneous
polynomials satbp with p ∈ U . Take the submodules Ka,b = {u ∈ U |satbu ∈ J} and note that
∪a,bKa,b forms a Hopf ideal as well. We note that U/K is the universal representation as K is
the minimal ideal of U which ensures that J is trivial in U/K[[s, t]] and since each representa-
tion (with conjugation) ρ : G −→ A induces ξ : U −→ A which, if extended, factors through
U [[s, t]]/J −→ A[[s, t]] so if ξ(k) 6= 0 inA for k ∈ Ka,b, then 0 = ξ(ksatb) = ξ(k)satb 6= 0, which
is a contradiction. �

Remark 8.2.4. We note that we could have proved that the representations with conjugation action
form a sensible collection of representations. However, this would not help much, since we should
still identify the (Hopf) ideal K to construct the universal representation.
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We set InDer(G) = InDer(G)/ ∼ with the equivalence determined by δ = δ′ if 1 + εδ = 1 + εδ′

as automorphism of the pair. Note that we now know that this forms a Lie algebra, as the inner
derivations correspond to automorphisms B(x, ε · y) = 1 + ε[i, i] (with · either the group scalar
multiplication or the module scalar multiplication and i = 1, 2, depending on whether y is a part
of H1 or not) and since this conjugation action is part of the structure of the Jordan-Kantor-like
sequence groups we know that it is, not only, a subalgebra, but in fact an ideal of the derivation
algebra. For general derivation algebras D containing the inner derivations, we can now consider
a TKK representation in the endomorphism algebra of the 5-graded Lie algebra

TKK(G,D) = (H1
−)2 ⊕ (G−)1 ⊕D ⊕ (G+)1 ⊕ (H1

+)2.

�e brackets involving elements d of D are determined by l1+εd = l + ε[l, d]. Note that this Lie
algebra is de�ned from L̃ = (H1

−)2 ⊕ (G−)1 ⊕ InDer(G) ⊕ (G+)1 ⊕ (H1
+)2 contained in the

universal representation (upon which we have the usual action). �en replacing InDer(G) with
InDer(G), which we will see to be compatible with the action, and then adding the elements of D.
So, we still need to de�ne the representation in the endomorphism algebra of this Lie algebra. We
only need to think about actions upon elements of D. We consider D ∈ D and x ∈ Gσ(Φ). We see
that

[1 + εD, exp(x)−1] = (1− εD) exp(x)(1 + εD) exp(x−1),

acts as
exp(x)1+εD exp(x)−1 = exp(ε ·Mod D

′x),

with D′x = Dx− ψ(D1x1, x1). Hence, we get that

1 + εDexp(x)−1
= exp(x)(1 + εD) exp(x)−1 = [1 + εD, exp(x)−1] + εD = exp(ε ·ModD

′x) + εD.

So, we get as action
Dexp(x)−1

= D +D′x.

We know that xn ·D must be the n-graded component of Dexp(x)−1 . Hence we have a morphism
from the universal representation to the endomorphism algebra of TKK(G,D). To see that it is
well de�ned, �rst consider the central extension of TKK(G, InDer(G)) contained in the universal
representation of G. �ereupon, we have a well-de�ned action using the adjoint representation.
�is induces an action on L = TKK(G, InDer(G)) (the action on InDer(G) coincides with the
computed action for a general D). Now, we can use this to de�ne the action on TKK(G,D). Specif-
ically, each D ∈ D is an endomorphism of L, and we identi�ed the action of exp(x) on D in the
endomorphism algebra and realised that exp(x) · D − D ∈ L (i.e. there exists a unique sensible
element x′ so that exp(x) ·D−D = ad x′, namely x′ = D′x). So, we can add D to L without any
problem. We can do this for all the D ∈ D at the same time to get TKK(G,D). So, we proved:

�eorem 8.2.5. Let G be a Jordan-Kantor-like sequence pair. For each derivation algebra D of G
containing the inner derivations, L = TKK(G,D) is a 5-graded Lie algebra and G has a Jordan-
Kantor-like sequence pair representation in the endomorphism algebra of L.
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A Nederlandstalige samenvatting

In deze thesis ontwikkelen we enkele concepten, namelijk ’sequence Φ-groups’ en ’sequence pairs’,
die ons toelaten om enkele resultaten van Faulkner [Fau00] en [Fau04] te veralgemenen van Jordan
paren naar Jordan-Kantor paren. Gebruik makend van deze concepten slagen we erin om correspon-
denties te leggen tussen (1) Hopf algebras, (2) Jordan-Kantor paren, (3) Lie algebras, (4) algebraı̈sche
groepen. We zullen deze linken hier uitleggen aan de hand van Jordan-Kantor-achtige sequence
pairs. We zullen verwijzen naar enkele resultaten, maar soms zullen deze gaan over sequence pairs
in plaats van Jordan-Kantor-achtige sequence pairs. Dergelijke resultaten kunnen altijd eenvoudig
uitgebreid worden tot Jordan-Kantor-achtige sequence pairs. In wat volgt duiden we met Φ de com-
mutatieve ring met eenheid aan (soms zullen we enkele extra voorwaarden formuleren) waarover
we werken.

Ten eerste bewijzen we dat elke cocommutatieve Z-gegradeerde Hopf algebraH , waarvan de prim-
itieve elementen 5-gegradeerd zijn en zodat er bovendien voldoende divided power series zijn
(De�nitie (1.5.5)), een sequence pair induceert (Stelling (2.4.23)). Omgekeerd, als we werken over
een veld Φ met karakteristiek verschillend van 2 en 3, dan weten we dat de universele represen-
tatie van een Jordan-Kantor-achtig sequence pair een dergelijke Hopf algebra is (Gevolg (5.3.15)).
Bovendien kunnen we garanderen, ongeacht of Φ een veld is, dat de universele representatie een
Z-gegradeerde cocommutateve Hopf algebra is (Stelling (8.2.3)).

Van een Jordan-Kantor-achtig sequence pair kunnen we de TKK Lie algebras L en de sequence pair
representaties in de endomor�smen algebra van L beschouwen (Stelling (8.2.5)) voor de versie zon-
der assumpties op de invertibiliteit van de scalairen). Deze Lie algebra’s zijn altijd 5-gegradeerd.
Omgekeerd kunnen we met een 5-gegradeerde Lie algebra L altijd een Jordan-Kantor paar P as-
sociëren. Als 1/6 ∈ Φ, dan weten we dat het a�eelden van een Jordan-Kantor-achtig sequence pair
op het overeenkomstig Jordan-Kantor paar een injectieve a�eelding is. Als 1/30 ∈ Φ, dan is het
een bijectie (Gevolg (4.3.4)). Omgekeerd, als 1/30 ∈ Φ kunnen we met elk Jordan-Kantor paar een
Jordan-Kantor-achtig sequence pair associëren. Als 1/5 /∈ Φ is het enigszins subtieler. Eenvoudigst
geformuleerd is de (nodige en voldoende) voorwaarde opdat er een overeenkomstig Jordan-Kantor-
achtig sequence pair is, dat alle exp(x) automor�smen zijn in plaats van slechts endomor�smen
(Stelling (2.4.8)).

Ook leggen we de link met algebraı̈sche groepen. Het is een veralgemening van de link gemaakt
door Loos [Loo79], alhoewel onze veralgemening nog enigszins verbreed moet worden om werke-
lijk een volwaardige veralgemening te zijn. Speci�ek introduceren we de notie van een veral-
gemeende elementaire actie. Hiermee kunnen we, indien we werken over een veld Φ en de se-
quence groups eindig dimensionaal zijn, heen en weer gaan tussen bepaalde algebraı̈sche groepen
en Jordan-Kantor-achtige sequence pairs (Sectie 7.5).

Naast het vele heen en weer tussen verschillende algebraı̈sche structuren hebben we ook enkele
relatief eenvoudige en tastbare voorbeelden gegeven van sequence pairs over ringen Φ die niet
noodzakelijk 1/6 beva�en. Hiervoor hebben we speciale sequence pairs (Hoofdstuk 3) onderzocht.
We hebben gezien dat speciale sequence pairs heel eenvoudig toelaten, als 1/3 /∈ Φ zit (maar 1/2
wel in Φ), om bepaalde sequence pairs te construeren. Bijgevolg induceren, over dergelijke Φ,
alle associatieve algebra’s met involutie een sequence pair (als uitbreiding van hoe ze dat doen als
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structureerbare algebra’s). Bovendien hebben we indien 1/2 /∈ Φ bewezen dat bepaalde families van
associatieve algebra’s sequence pairs induceren. Hieronder vallen de separabele velduitbreidingen
van graad 2 met Galois involutie en de quaternionenalgebra’s.

Ook zijn we er ook in geslaagd (Sectie 4.4) om uit structureerbare algebra’s gevormd uit een asso-
ciatieve algebra A en een rechts A-moduul M met een hermitische vorm M ×M −→ A, indien
1/3 /∈ Φ, ook sequence pairs te induceren. Net zoals bij de speciale sequence pairs wordt het indien
1/2 niet voorhanden is een stuk subtieler.

Ten slo�e zijn we erin geslaagd om indien Φ een veld is van karakteristiek 0, een andere beschrijv-
ing te geven van de universele representatie van een Jordan-Kantor-achtig sequence pair P . Speci-
�ek, de universele representatie is isomorf aan de universele enveloping algebra van de universele
centrale cover van de TKK Lie algebra L gerelateerd aan P (Stelling (6.2.2)).
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B Homogeneous maps

We introduce some concepts and a theorem from [Fau00, Appendix A] pertaining to homogeneous
maps.

Let V and W be modules over a unital, commutative associative ring Φ. If f : V −→ W is
constant, we call f Homogeneous of degree 0. For each n ≥ 1 we shall recursively de�ne
f : V −→ W to be homogeneous of degree n with (i, j)-linearization fij : V × V −→ W ,
with i+ j = n, i, j ≥ 1, provided that for all λ ∈ Φ, u, v, w ∈ V ,

1. f(λv) = λnf(v),

2. f(u+ v) = f(u) + f(v) +
∑

i+j=ni,j≥1 fij(v, v),

3. u 7→ flk(u,w) is homogeneous of degree l with (i, j)-linearization (u, v) 7→ fijk(u, v, w),

4. fij(v, v) =
(
n
i

)
f(v) for i+ j = n, i, j ≥ 1,

5. fij(u, v) = fji(v, u) for i+ j = n, i, j ≥ 1,

6. fijk(u, v, w) = fikj(u,w, v) for i+ j + k = n, i, j, k ≥ 1.

Remark B.1.1. Note that this is a generalization of the de�nition of a quadratic map. Namely, f is
homogeneous of degree 2 if and only if f(λv) = λ2v, and

f11(u, v) = f(u+ v)− f(u)− f(v),

is bilinear.

We can further de�ne linearizations for homogeneous maps f of degree n. Speci�cally, we can
de�ne fi1,i2,i3···ik as the (i1, i2) linearization of fi1+i2,i3···ik .

�eorem B.1.2. Let f : V −→ W be homogeneous of degree n, for Φ-modules V and W , with
linearizations fi1···ik and let Ω be an extension ring of Φ. If (Ṽ , W̃ ) is either (V ⊗ Ω,W ⊗ Ω) or
(V [[s]],W [[s]]) then there is a unique homogeneous map of degreen, f̃ : Ṽ −→ W̃ with linearizations

˜fi1···ik which extend f and fi1···ik .

Proof. �is is [Fau00, �eorem 35]. �
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